簡易檢索 / 詳目顯示

研究生: 周大磊
Chou, Ta-Lei
論文名稱: 氧化鋅奈米線/氧化鋅薄膜複合結構於 玻璃基板上的鍍製與分析
Deposition and Characterization of an Integrated ZnO Nanowires/ ZnO Thin Film Structure on Glass
指導教授: 丁志明
Ting, Jyh-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 85
中文關鍵詞: 氧化鋅奈米線濺鍍無電鍍
外文關鍵詞: Electroless Plating, Sputter, Nanowires, Zinc Oxide
相關次數: 點閱:77下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   從先前的實驗中意外發現在適當條件下析鍍的無電鍍銅層經由射頻磁控式濺鍍法於其表面沉積氧化鋅層可得到一維/二維複合氧化鋅奈米結構,然而在濺鍍銅上卻只能觀察到平坦的氧化鋅薄膜。從掃描式電子顯微術(Scanning Electron Microscopy, SEM)及穿透式電子顯微術(Transmission Electron Microscopy, TEM)我們觀察到氧化鋅奈米線皆由氧化鋅薄膜的團簇邊界長出且奈米線的兩端均無催化劑的存在,故以一般的VLS(Vapor-Liquid-Solid)機制來解釋此結構的成長並不恰當。為使此複合結構有更廣的應用價值,在本論文中我們延續先前的實驗但將基板由單晶矽基板改為非晶(Amorphous)的玻璃基板,接著以無電鍍銅作為底層金屬來探討其析鍍參數與上層氧化鋅層特性之關聯性,同時我們仍再次使用濺鍍銅但改用射頻磁控式濺鍍且改變其濺鍍時的基板溫度來更深入地探討與無電鍍銅系統間結果的差異。另外,我們也將無電鍍銅/玻璃基板系統改為無電鍍鎳銅磷/鋁基板系統並觀察不同鍍浴組成,尤其是根據文獻中提到的利用Saccharin(C7H5NO3S)的添加改變無電鍍層內應力對氧化鋅層的效應。

      論文的第二部分將固定無電鍍銅層條件,在濺鍍氧化鋅層時則採用不同的濺鍍時間、氧氣/氬氣流量比、射頻功率及濺鍍槍入射角等並分別以掃描式電子顯微術、穿透式電子顯微術、原子力顯微術(Atomic Force Microscopy, AFM)、X光繞射分析(X-ray Diffraction, XRD)、拉曼光譜術(Raman Spectroscopy)、歐傑電子能譜術 (Auger Electron Spectroscopy, AES)等方法分析,結果顯示在適當析鍍條件下得到的無電鍍銅我們在其上層氧化鋅層表面也可觀察到一維/二維的氧化鋅複合奈米結構,如同先前實驗的結果,多晶的氧化鋅奈米線皆由氧化鋅薄膜的團簇邊界中長出,然而在濺鍍銅上我們卻仍然只能觀察到具有島狀團簇氧化鋅薄膜結構;在適當條件下析鍍的無電鍍鎳銅磷層我們則可在其上層氧化鋅層表面觀察到氧化鋅奈米板/氧化鋅薄膜複合結構的出現,但無電鍍層內應力的改變對氧化鋅層表面形貌並沒有太顯著的影響。

      當固定析鍍條件接著在無電鍍銅層上層以不同製程參數濺鍍氧化鋅層,我們發現到氧化鋅奈米線會在氧化鋅薄膜成為一連續鍍層前優先出現,且其實際長度約與濺鍍時間的0.5次方成正比,屬於“Diffusion Controlled Growth”,然而氧化鋅薄膜厚度卻呈線性增加,故漸漸地氧化鋅奈米線會被氧化鋅薄膜所淹沒;另一方面,在氬氣濺鍍氣氛中添加氧氣我們則可發現氧化鋅奈米線的單位面積密度會隨之上升且平均直徑微幅下降。此外,當使用較高的濺鍍功率及斜向入射濺鍍雖然可得到結晶性及優選取向較佳之氧化鋅鍍層,但其表面皆沒有任何一維氧化鋅奈米結構的出現。利用這些實驗結果,我們將會在這篇論文裡對此複合結構的成長模型提出討論。

      From previous research we accidentally found that when we deposited ZnO on the electroless plated (ELP) copper layers prepared using proper deposition parameters, there would be an integrated 1-D/ 2-D ZnO structure; however, we could only find ZnO thin film on sputtered Cu. From the results of scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations, we could not find catalyst particles at both ends of nanowires; besides, all the nanowires were grown out from the cluster boundaries of thin films, so it is not suitable to explain such a growth using traditional vapor-liquid-solid (VLS) mechanism. For more applications, we replaced the single-crystalline Si substrates with amorphous glasses and correlated the characteristics of ZnO layers to the metallic underlayers (ELP Cu and RF sputtered Cu) deposited using different process parameters. Besides, we used ELP Ni-Cu-P/ Al sheet as the underlayers/ substrates and observed how the internal stress of the electroless layers affect the ZnO layers.

      In the second part of this research, we deposited the ELP Cu layers using a fixed parameter and tried to discuss the effects of different process parameters, including deposition time, atmosphere, RF power and incidental angles when we deposited the ZnO layers. All the samples were characterized using SEM, TEM, X-ray diffraction (XRD), Raman spectroscopy, Auger electron spectroscopy (AES) and four-point probe. As shown in the previous research, we found that all the polycrystalline ZnO nanowires are grown out from the cluster boundaries of the ZnO thin films when we deposited the ELP Cu underlayers using proper deposition parameters; however, there still were granular ZnO thin films on the sputtered Cu layers. As for the ELP Ni-Cu-P underlayers, in some conditions we could find an integrated ZnO nanoplates/ ZnO thin films structure.

      We deposited ZnO on the same ELP Cu layers using different deposition times and found that before the ZnO thin films become continuous; ZnO nanowires have grown out of the surface. Besides, the length of the ZnO nanowires is nearly proportional to t0.5 (t: deposition time), which means a “Diffusion Controlled Growth” ; however, the thickness of ZnO thin films increases linearly, so all the ZnO nanowires are embedded in the ZnO films for a long enough deposition time. When we used an O2/ Ar mixed atmosphere, the area density of ZnO nanowires increased and the diameters of ZnO nanowires decreased slightly. Although a higher RF power and tilt incidental angle give the ZnO layers a better (002) preferred orientation and crystallinity; we cannot find any ZnO nanowires grown out of the surface. Based on these results, a growth model of this integrated structure is discussed.

    第一章 簡介及文獻回顧 1.1 前言•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••1 1.2 氧化鋅的結構、基本性質與應用•••••••••••••••••••••••••••••••••••••••1 1.3 無電鍍•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••2 1.4 研究動機及目的•••••••••••••••••••••••••••••••••••••••••••••••••••••6 第二章 實驗步驟 2.1 基板裁切與清洗•••••••••••••••••••••••••••••••••••••••••••••••••••••8 2.2 基板表面前處理•••••••••••••••••••••••••••••••••••••••••••••••••••••8 2.3 無電鍍銅及無電鍍鎳銅磷••••••••••••••••••••••••••••••••••••••••••••10 2.4 濺鍍氧化鋅••••••••••••••••••••••••••••••••••••••••••••••••••••••••13 2.5 試片特性分析••••••••••••••••••••••••••••••••••••••••••••••••••••••14 第三章 結果與討論 3.1 無電鍍層的特性分析••••••••••••••••••••••••••••••••••••••••••••••••16 3.1.1 無電鍍銅•••••••••••••••••••••••••••••••••••••••••••••••••••••16 3.1.2 無電鍍鎳銅磷•••••••••••••••••••••••••••••••••••••••••••••••••28 3.2 無電鍍層特性對氧化鋅層的效應••••••••••••••••••••••••••••••••••••••36 3.3 不同氧化鋅濺鍍參數的效應••••••••••••••••••••••••••••••••••••••••••44 3.3.1 不同濺鍍時間長短的效應•••••••••••••••••••••••••••••••••••••••44 3.3.2 不同射頻功率的效應•••••••••••••••••••••••••••••••••••••••••••47 3.3.3 不同氧分率之效應•••••••••••••••••••••••••••••••••••••••••••••49 3.3.4 不同入射角度的效應•••••••••••••••••••••••••••••••••••••••••••52 3.4 熱處理對金屬層及氧化鋅鍍層的效應••••••••••••••••••••••••••••••••••58 3.4.1 熱處理對金屬層的效應•••••••••••••••••••••••••••••••••••••••••58 3.4.2 熱處理對氧化鋅鍍層表面形貌及結晶性質的效應•••••••••••••••••••61 3.5 氧化鋅層的拉曼光譜分析••••••••••••••••••••••••••••••••••••••••••••67 3.5.1 不同底層金屬層對氧化鋅層拉曼光譜的效應•••••••••••••••••••••••67 3.5.2 不同氧化鋅濺鍍參數對氧化鋅鍍層拉曼光譜的效應•••••••••••••••••69 3.5.3 熱處理的效應•••••••••••••••••••••••••••••••••••••••••••••••••71 3.6 氧化鋅層生長模型之探討••••••••••••••••••••••••••••••••••••••••••••75 第四章 結論•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••78 文獻回顧••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••79 致謝••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••84 作者簡介••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••85

    1. Z. L. Wang, Zinc Oxide Nanostructures: Growth, Properties and Applications, J. Phys.: Condens. Mater. v.16, R829-R858, 2004
    2. Z. L. Wang, Nanostructures of Zinc Oxide, Materials Today, June 2004, Elsevier Ltdlll
    3. “奈米材料和奈米結構”,張立德、牟季美著,葉瑞銘修校,滄海書局,2002, p.5.
    4. P. D. Yang, Haoquan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, H. J. Choi, Controlled Growth of ZnO Nanowires and Their Optical Properties, Advanced Functional Materials, v.12, n.5, p.323-p.331, 2002
    5. W. Lee, M. C. Jeong, J. M. Myoung, Catalyst-free Growth of ZnO Nanowires by Metal-organic Chemical Vapor Deposition (MOCVD) and Thermal Evaporation, Acta Materialia, v.52, p.3949-p.3957, 2004
    6. B. P. Zhang, N. T. Binh, K. Wakatsuki, Y. Segawa, Y. Kashiwaba, K. Haga, Synthesis and Optical Properties of Single Crystal ZnO Nanorods, Nanotechnology, v.15, S382-S388, 2004
    7. H. Zhang, X. Ma, J. Xu, J. Niu, D. Yang, Arrays of ZnO Nanowires Fabricated by a Simple Chemical Solution Route, v.14, p.423-p.426, Nanotechnology, 2003
    8. S. E. Ahn, J. S. Lee, H. Kim, S. Kim, B. H. Kang, K. H. Kim, G. T. Kim, Photoresponse of Sol-gel-synthesized ZnO Nanorods, Appl. Phys. Lett., v.84, n.24 p.5022-p.5024, 2004
    9. L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, P-D Yang, Low-temperature Wafer-scale Production of ZnO Nanowires Arrays, Angew. Chem. Int. Ed., v.42, p.3031-p.3034, 2003
    10. G. Zou, D. Yu, D. Wang, W. Zhang, L. Xu, W. Yu, Y. Qian, Controlled Synthesis of ZnO Nanocrystals with Column-, Rosette-and Fiber-like Morphologies and Their Photoluminescence Property, Mater. Chem. Phys., v.88, p.150-p.154, 2004
    11. Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, M. J. McDermott, M. A. Rodriguez, H. Konishi, H. Xu, Nature Mater., v.2, p.821-p.826, 2003
    12. D. W. Bahnemann, C. Kormann, and M. R. Hoffmann, Preparation and Characterization of Quantum Size Zinc Oxide: a Detailed Spectroscopic Study, J. Phys. Chem., v.91, p.3789-p.3798, 1987
    13. Y. Li, G. S. Cheng, L. D. Zhang, Fabrication of Highly Ordered ZnO Nanowire Arrays in Anodic Alumina Membranes, J. Mater. Res., v.15, n.11, p.2305-p.2308, 2000
    14. Y. C. Wang, I. C. Leu, M. H. Hon, Preparation of Nanosized ZnO Arrays by Electrophoretic Deposition, Electrochemical and Solid-State Letters, v.5, n.4, p.C53-C55, 2002
    15. C. Liu, J. Antonio Zapien, Y. Yao, X. Meng, C. S. Lee, S. Fan, Y. Lifshits, S. T. Lee, Adv. Mater. , v.15, n.10, p838-p.841, 2003
    16. P. Nunes, E. Fortunato, P. Tonello, F. Braz Fernandes, P. Vilarinho, R. Martins, Effect of different dopant elements on the properties of ZnO thin films, Vacuum, v.64, p.281-p.285, 2002
    17. C. E. Rice, G. S. Tompa, L. G. Provost, N. Sbrockey, J. Cuchiaro, MOCVD Zinc Oxide Films for Wide Bandgap Applications, MRS Symp. Proc., v.764, p.117-122
    18. K. Haga, T. Suzuki, Y. Kashiwaba, H. Watanabe, B. P. Zhang, Y. Segawa, High-quality ZnO films prepared on Si wafers by low-pressure MO-CVD, Thin solid Films, v.433, n.1-2, p.131-p.134, 2003
    19. Y. Kashiwaba, F. Katahira, K. Haga, T. Sekiguchi, H. Watanabe, J. Cryst. Growth, v.221, n.1-4, p.431-p.434, 2000
    20. Ma, Jin; Ji, Feng; Ma, Hong-Iei; Li, Shu-ying , Preparation and Characterization of ZnO Films by an Evaporating Method, J. Vacuum Science & Technology A: Vacuum, Surfaces, and Films, v.13, n.1, p.92-p.94, 1995
    21. J. H. Lee, B. O. Park, Transparent ZnO: Al, In and Sn Thin Films Deposited by the Sol-gel Method, Thin Solid Films, v.426, p.94-p.99, 2003
    22. S. H. Bae, S. Y. Lee, B. J. Jin, S. Im, Pulsed Laser Deposition of ZnO Thin Films for Applications of Light Emission, Appl. Surf. Sci., v.154-155, p.458-p.461, 2000
    23. Z. Li, W. Gao, ZnO Thin Films with DC and RF Reactive Sputtering, Materials Letters, v.58, p.1363-p.1370, 2004
    24. S. G. David, C. Bright, Transparent Conducting Oxides, MRS Bulletin, v.25, n.8, p.15-p.21, 2000
    25. G. O. Mallory, J. B. Hajdu, Electroless Plating: Fundamentals and Applications, American Electroplaters and Surface Finishers, 1990
    26. K. Kobayakawa, M. Morita, K. Miyauchi, Y. Sato, E. Fujimoto, Catalytic Activity of Sputtered Palladium Films for Electroless Nickel Plating Studied Using a Quartz Crystal Microbalance, Plating and Surface Finishing, v.87, n.9, p.79, 2000
    27. H. Yoshiki, K. Hashimoto, A. Fujishima, Adhesion Mechanism of Electroless Copper Film Formed on Ceramic Substrates Using ZnO Thin Film as an Intermediate Layer, J. Electrochem. Soc. v.145, n.5, p.1430-1434, 1998
    28. “內應力對無電鍍鎳銅磷析鍍於鋁基材上影響之研究”,國立成功大學材料科學及工程學系博士論文, 許仁哲,民93
    29. “銅製程矽晶片上ZnO薄膜合成之研究”,國立成功大學材料科學及工程學系碩士論文, 張益新,民89
    30. “新穎氧化鋅奈米線生長技術”,國立成功大學材料科學及工程學系碩士論文, 邱文鼎,民91
    31. “材料分析”,汪建民主編,中國材料科學學會,民87
    32. Sidney Perkowitz, “Optical Characterization of Semiconductors- Infrared, Raman, and Photoluminescence Spectroscopy”, Academic Press, 1993
    33. “三五族半導體奈米線之光譜研究”,國立台灣師範大學物理所碩士論文,林大均,民93
    34. B. Johnson, R. Amster, and L. Vanasupa, Grain Nucleation and Texture Analysis of Electroless Copper Deposition on a Palladium Layer, J. Electronic Materials, v.27, n.7, p.923-p.927, 1998
    35. E. M. Bachari, G. Baud, S. Ben Amor, M. Jacquet, Structural and Optical Properties of Sputtered ZnO Films, Thin Solid Films, v.348, n.1, p.165-p.172, 1999
    36. T. Karabacak, A. Mallikarjunan, J. P. Singh, D. Ye, G. C. Wang, T. M. Lu, β-phase tungsten nanorod formation by oblique-angle sputter deposition, Appl. Phys. Lett., v. 83, n.15, p.3096-p.3098, 2003
    37. N. Fujimura, T. Nishihara, S. Goto, J. Xu and T. Ito, Control of Preferred Orientation for ZnOx Films: Control of Self-texture, J. Crystal Growth, v.130, p.269-p.279, 1993
    38. M. Ohring, “The Materials Science of Thin Films”, Academic Press, 1992
    39. M. Tzolov, N. Tzenov, D. Dimova-Malinovska, M. Kalitzova, C. Pizzuto, G. Vitali, G. Zollo, I. Ivanov, Vibrational Properties and Structure of Undoped and Al-doped ZnO Films Deposited by RF Magnetron Sputtering, Thin solid films, v.379, p.28-p.36, 2000
    40. C. Roy, S. Byrne, E. McGlynn, J. P. Mosnier, E. de Posada, D. O’Mahony, J. G. Lunney, M. O. Henry, B. Ryan, A. A. Cafolla, Correlation of Raman and X-ray Diffraction Measurements of Annealed Pulsed Laser Deposited ZnO Thin Films, Thin solid films, v.436, p.273-p.276, 2003
    41. G. J. Exarhos, S. K. Sharma, Influence of Processing Variables on the Structure and Properties of ZnO Films, Thin Solid films, v.270, p.27-32, p.276, 2003
    42. C. X. Xu and X. W. Sun, Characteristics and Growth Mechanism of ZnO Whiskers Fabricated by Vapor Transport, Jpn. J. Appl. Phys., v.42, p.4949-p.4952, 2003
    43. K. R. Harikumar, A. K. Santra, C. N. R. Rao, An Investigation of the Cu/ZnO/Zn System: Evidence for the Formation of Cu-Zn Alloys by the Inward Diffusion of Cu, Applied Surface Science, v.93, p.135-p.141, 1996
    44. R. W. Balluffi, Diffusion in Crystalline Solids: Grain Boundary Diffusion Mechanisms in Metals, Academic Press, 1984, p.319-p.374
    45. M. Date, K. N. Tu, T. Shoji, M. Fujiyoshi, K. Sato, Interfacial Reactions and Impact Reliability of Sn-Zn Solder Joints on Cu or Electroless Au/Ni(P) Bond-pads, Journal of Materials Research, v 19, n 10, p.2887-p.2896, 2004
    46. M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. D. Yang, Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport, v.13, n.2, p.113-p.116, 2001
    47. S. Y. Li, C. Y. Lee, T. Y. Tseng, Copper-catalyzed ZnO Nanowires on Silicon(100) Grown by Vapor-liquid-Solid Process, Journal of Crystal Growth, v.247, p.357-p.362, 2003
    48. D. R. Gaskell, Introduction to the Thermodynamics of Materials (4th ed.), Taylor & Francis Books. Inc., 2003, p.346
    49. K. N. Tu, Cu/Sn Interfacial Reactions: Thin Film Case versus Bulk Case, Materials Chemistry and Physics, v.46, p.217-p.223, 1996
    50. B. Z. Lee and D. N. Lee, Spontaneous Growth Mechanism of TiN Whiskers, Acta Mater., v.46, n.10, p.3701-3714, 1998
    51. S. K. Pabi and B. S. Murty, Mechanism of Mechanical Alloying in Ni-Al and Cu-Zn Systems, Materials Science and Engineering, A214, p.146-p.152, 1996
    52. J. A. Floro, E. Chason, R. C. Cammarata, D. S. Srolovitz, Physical Origins of Intrinsic Stresses in Volmer-Weber Thin Films, MRS Bulletin, p.19-p.25, 2002

    下載圖示 校內:2006-07-06公開
    校外:2010-07-06公開
    QR CODE