| 研究生: |
林孟萱 Lin, Meng-Hsuan |
|---|---|
| 論文名稱: |
萬古黴素在腸球菌引起的菌血症病患體內的藥物動力學及藥效動力學 Pharmacokinetics and Pharmacodynamics of Vancomycin in Patients with Enterococcal Bacteremia |
| 指導教授: |
周辰熹
Chou, Chen-Hsi 李南瑤 Lee, Nan-Yao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 臨床藥學與藥物科技研究所 Institute of Clinical Pharmacy and Pharmaceutical sciences |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 萬古黴素 、腸球菌 、菌血症 、藥物療效監測 、藥物動力學 、臨床療效 |
| 外文關鍵詞: | vancomycin, enterococcus, bacteremia, therapeutic drug monitoring, pharmacokinetics, clinical outcome |
| 相關次數: | 點閱:153 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
研究背景
萬古黴素(vancomycin)為一種醣肽類抗生素(glycopeptide antibiotics),自1950年代上市以後,被廣泛用於對其他抗生素不敏感的革蘭氏陽性菌所引起致命性感染,尤其是出現methicillin抗藥性的金黃色葡萄球菌(methicillin-resistant Staphylococcus aureus, MRSA)。
腸球菌(Enterococcus spp.)在過去被認為是低毒性、較不具高臨床意義的細菌,隨著醫療的進步、侵入性裝置的介入與多種抗生素的使用,腸球菌近年來已成為院內感染菌血症的重要致病菌之一。Ampicillin和萬古黴素為治療腸球菌感染的主要抗生素,然而隨著Enterococcus faecium對ampicillin產生高抗藥性,萬古黴素的使用日趨重要。在臨床實務上,萬古黴素對於菌血症的藥效動力學研究主要根據以針對MRSA為研究的文獻建議而訂定;亦有研究指出,當萬古黴素的血中濃度達到15-20 mg/L時,療效增加,腎毒性的發生率也會大幅上升。目前在國內少有針對萬古黴素在腸球菌所引起的菌血症治療的研究,因此本研究旨於使用過去接受萬古黴素治療腸球菌引起的菌血症之數據,建立萬古黴素在此類患者體內的藥物動力學模型並分析其治療結果。
研究目的
藉由分析過去病患使用萬古黴素治療的數據資料,建立相關的群體藥物動力學模型,進而瞭解治療腸球菌所引起的菌血症之藥效動力學,建立最適治療濃度建議。
研究方法
本研究為回溯性世代研究設計,收案期間為2013年1月至2017年12月,研究對象為國立成功大學醫學院附設醫院內曾接受過萬古黴素作為腸球菌引起的菌血症主要治療的病患,研究者蒐集病人住院期間的藥物濃度監測資料及菌種的最小抑菌濃度(minimum inhibitory concentration, MIC)等資料,建立萬古黴素的藥物動力學模型及分析其治療結果。
研究結果
納入藥物動力學模型的有158位病患並取得387個濃度點,年齡中位數為68.5歲,男性占62.1%,腎功能不全的病患偏多;進入臨床療效評估的有79位病患,其中有28位治療失敗,男性有65.8%,且大於65歲的老年人居多(60.8%)。
分布體積和清除率的族群平均估計值分別為48.7 L及2.15 L/hr。對vancomycin的分布體積有顯著影響的為年齡、心衰竭與腹水;影響清除率則為腎功能和腹水,收案病人的藥物半衰期中位數為16.6小時。臨床療效以CART分析結果顯示AUIC24h介於231至767有較高的治療成功率。於單變量分析中,治療失敗組別內AUIC24h超出範圍的人數顯著較治療成功組別多(66.7% vs 33.3%, P =0.04),而治療天數、波谷濃度及最小抑菌濃度在兩組中是沒有顯著差異的。利用多變量羅吉斯迴歸校正治療成功與失敗兩組有顯著差異的變數,AUIC24h <231或> 767亦為治療失敗的獨立危險因子(aOR=4.57, 95%CI=1.36-15.33, P=0.014)。79人當中,有14人發生急性腎衰竭,AUC24h的切點為810,且發生腎毒性族群的AUC24h和波谷濃度皆顯著高於未發生腎毒性的組別。
結論與建議
在腸球菌感染菌血症之族群中,除已知的腎功能和年齡外,亦須注意腹水、心衰竭等疾病對vancomycin藥物動力學的影響,當AUIC24h大於231時,治療成功率即顯著提升,相較於過去IDSA等臨床治療指引,對於腸球菌菌血症病患的治療上或許可不須將AUC調高至400,即可達到治療目的,也可降低急性腎衰竭發生的可能性。
Enterococci has become one of the most important nosocomial pathogens in recent years. Report of Taiwan Nosocomial Infection Surveillance system showed that E. faecium to be the fourth leading cause of healthcare-associated bacteremia in 2017, an increase from the eleventh in the 2008. Vancomycin plays an important role in antimicrobial therapy for multidrug resistant E. faecium. Current recommendations for vancomycin therapeutic concentration targets were AUC24h/MIC >400 hr and trough between 15-20 mg/L and based mainly on research from methicillin-resistant Staphylococcus aureus. However, studies also showed higher trough concentration levels were associated with increased risk of nephrotoxicity. The aim of our study is to establish a pharmacokinetic and pharmacodynamics model, and to analyze the clinical outcome of vancomycin against enterococcal bacteremia. A retrospective study was conducted at National Cheng Kung University Hospital. We included all adult patients who received vancomycin treatment for enterococcal bacteremia and had at least one vancomycin level after starting treatment between January 1st 2013 and December 31st 2017. This study was approved by the hospital’s Institutional Review Board. A total of 161 patients were included for pharmacokinetics model study. Age, congestive heart failure and ascites had a significant influence on volume of distribution, and creatinine clearance and ascites significantly influenced systemic clearance. For clinical analysis, 79 patients were enrolled. In the CART analysis, vancomycin AUC24h/MIC (AUIC24h) in a range (231-767) was associated with a higher treatment success rate (66.7% vs 33.3%, P = 0.04). In conclusion, our study found that pharmacodynamic target of vancomycin AUC24h/MIC between 231 and 767 was associated with successful treatment outcome, which differed from the target of 400 for MRSA infections. These findings warranted further exploration to elucidate the possibility to lower nephrotoxicity.
1. 衛生福利部疾病管理署. 台灣院內感染監視資訊系統(TNIS系統)2017年第3季監視報告. 2017; https://www.cdc.gov.tw/professional/info.aspx?treeid=3f2310b85436188d&nowtreeid=e40fc8c198042767&tid=24FB180307C2DCBD. Accessed 22 Jun, 2018.
2. 成大醫院感染管制中心. 成大醫院106年07至12月臨床 / (醫療照護相關感染) 分離菌株藥物敏感性試驗(歸人)統計表. 2017; http://tqip.hosp.ncku.edu.tw:8080/control/. Accessed 27 May, 2018.
3. Liu C, Bayer A, Cosgrove SE, et al. Clinical practice guidelines by the infectious diseases society of america for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children: executive summary. Clin Infect Dis.52;3:285-292. 2011
4. Cano EL, Haque NZ, Welch VL, et al. Incidence of nephrotoxicity and association with vancomycin use in intensive care unit patients with pneumonia: retrospective analysis of the IMPACT-HAP Database. Clin Ther.34;1:149-157. 2012
5. Levine DP. Vancomycin: a history. Clin Infect Dis.42 Suppl 1:S5-12. 2006
6. Rybak M, Lomaestro B, Rotschafer JC, et al. Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Am J Health Syst Pharm.66;1:82-98. 2009
7. Matzke GR, Zhanel GG, Guay DR. Clinical pharmacokinetics of vancomycin. Clin Pharmacokinet.11;4:257-282. 1986
8. Li PK, Szeto CC, Piraino B, et al. Peritoneal dialysis-related infections recommendations: 2010 update. Perit Dial Int.30;4:393-423. 2010
9. Albanese J, Leone M, Bruguerolle B, Ayem ML, Lacarelle B, Martin C. Cerebrospinal fluid penetration and pharmacokinetics of vancomycin administered by continuous infusion to mechanically ventilated patients in an intensive care unit. Antimicrob Agents Chemother.44;5:1356-1358. 2000
10. Pryka RD, Rodvold KA, Garrison M, Rotschafer JC. Individualizing vancomycin dosage regimens: one- versus two-compartment Bayesian models. Ther Drug Monit.11;4:450-454. 1989
11. Wu G, Furlanut M. Prediction of serum vancomycin concentrations using one-, two- and three-compartment models with implemented population pharmacokinetic parameters and with the Bayesian method. J Pharm Pharmacol.50;8:851-856. 1998
12. Ducharme MP, Slaughter RL, Edwards DJ. Vancomycin pharmacokinetics in a patient population: effect of age, gender, and body weight. Ther Drug Monit.16;5:513-518. 1994
13. Cutler NR, Narang PK, Lesko LJ, Ninos M, Power M. Vancomycin disposition: The importance of age. Clin Pharmacol Ther.36;6:803-810. 1984
14. Guay DRP, Vance‐Bryan K, Gilliland S, Rodvold K, Rotschafer J. Comparison of Vancomycin Pharmacokinetics in Hospitalized Elderly and Young Patients Using a Bayesian Forecaster. J Pharmacol Clin.33;10:918-922. 1993
15. Bauer LA, Black DJ, Lill JS. Vancomycin dosing in morbidly obese patients. Eur J Clin Pharmacol.54;8:621-625. 1998
16. Aldaz A, Ortega A, Idoate A, Giraldez J, Brugarolas A. Effects of hepatic function on vancomycin pharmacokinetics in patients with cancer. Ther Drug Monit.22;3:250-257. 2000
17. Morita K, Yamaji A. Changes in the serum protein binding of vancomycin in patients with methicillin-resistant Staphylococcus aureus infection: the role of serum alpha 1-acid glycoprotein levels. Ther Drug Monit.17;2:107-112. 1995
18. Zokufa HZ, Solem LD, Rodvold KA, Crossley KB, Fischer JH, Rotschafer JC. The influence of serum albumin and alpha 1-acid glycoprotein on vancomycin protein binding in patients with burn injuries. J Burn Care Rehabil.10;5:425-428. 1989
19. Mizuno T, Mizokami F, Fukami K, et al. The influence of severe hypoalbuminemia on the half-life of vancomycin in elderly patients with methicillin-resistant Staphylococcus aureus hospital-acquired pneumonia. Clin Interv Aging.8:1323-1328. 2013
20. Butterfield JM, Patel N, Pai MP, Rosano TG, Drusano GL, Lodise TP. Refining vancomycin protein binding estimates: identification of clinical factors that influence protein binding. Antimicrob Agents Chemother.55;9:4277-4282. 2011
21. Nielsen HE, Hansen HE, Korsager B, Skov PE. Renal excretion of vancomycinin in kidney disease. Acta Med Scand.197;4:261-264. 1975
22. Krogstad DJ, Moellering RC, Jr., Greenblatt DJ. Single-dose kinetics of intravenous vancomycin. J Clin Pharmacol.20;4 Pt 1:197-201. 1980
23. Shimamoto Y, Fukuda T, Tominari S, et al. Decreased vancomycin clearance in patients with congestive heart failure. Eur J Clin Pharmacol.69;3:449-457. 2013
24. Rybak MJ. The pharmacokinetic and pharmacodynamic properties of vancomycin. Clin Infect Dis.42 Suppl 1:S35-39. 2006
25. Moise-Broder PA, Forrest A, Birmingham MC, Schentag JJ. Pharmacodynamics of vancomycin and other antimicrobials in patients with Staphylococcus aureus lower respiratory tract infections. Clin Pharmacokinet.43;13:925-942. 2004
26. Prybylski JP. Vancomycin Trough Concentration as a Predictor of Clinical Outcomes in Patients with Staphylococcus aureus Bacteremia: A Meta-analysis of Observational Studies. Pharmacotherapy.35;10:889-898. 2015
27. Patel N, Pai MP, Rodvold KA, Lomaestro B, Drusano GL, Lodise TP. Vancomycin: we can't get there from here. Clin Infect Dis.52;8:969-974. 2011
28. van Hal SJ, Paterson DL, Lodise TP. Systematic review and meta-analysis of vancomycin-induced nephrotoxicity associated with dosing schedules that maintain troughs between 15 and 20 milligrams per liter. Antimicrob Agents Chemother.57;2:734-744. 2013
29. Bruniera FR, Ferreira FM, Saviolli LR, et al. The use of vancomycin with its therapeutic and adverse effects: a review. Eur Rev Med Pharmacol Sci.19;4:694-700. 2015
30. Elbarbry F. Vancomycin Dosing and Monitoring: Critical Evaluation of the Current Practice. Eur J Drug Metab Pharmacokinet.43;3:259-268. 2018
31. Hao JJ, Chen H, Zhou JX. Continuous versus intermittent infusion of vancomycin in adult patients: A systematic review and meta-analysis. Int J Antimicrob Agents.47;1:28-35. 2016
32. Cataldo MA, Tacconelli E, Grilli E, Pea F, Petrosillo N. Continuous versus intermittent infusion of vancomycin for the treatment of Gram-positive infections: systematic review and meta-analysis. J Antimicrob Chemother.67;1:17-24. 2012
33. Hanrahan T, Whitehouse T, Lipman J, Roberts JA. Vancomycin-associated nephrotoxicity: A meta-analysis of administration by continuous versus intermittent infusion. Int J Antimicrob Agents.46;3:249-253. 2015
34. Neely MN, Youn G, Jones B, et al. Are vancomycin trough concentrations adequate for optimal dosing? Antimicrob Agents Chemother.58;1:309-316. 2014
35. Chavada R, Ghosh N, Sandaradura I, Maley M, Van Hal SJ. Establishment of an AUC0-24 Threshold for Nephrotoxicity Is a Step towards Individualized Vancomycin Dosing for Methicillin-Resistant Staphylococcus aureus Bacteremia. Antimicrob Agents Chemother.61;5. 2017
36. Geraci JE, Heilman FR, Nichols DR, Wellman WE. Antibiotic therapy of bacterial endocarditis. VII. Vancomycin for acute micrococcal endocarditis; preliminary report. Proc Staff Meet Mayo Clin.33;7:172-181. 1958
37. Elting LS, Rubenstein EB, Kurtin D, et al. Mississippi mud in the 1990s: risks and outcomes of vancomycin-associated toxicity in general oncology practice. Cancer.83;12:2597-2607. 1998
38. Cantu TG, Yamanaka-Yuen NA, Lietman PS. Serum vancomycin concentrations: reappraisal of their clinical value. Clin Infect Dis.18;4:533-543. 1994
39. Forouzesh A, Moise PA, Sakoulas G. Vancomycin ototoxicity: a reevaluation in an era of increasing doses. Antimicrob Agents Chemother.53;2:483-486. 2009
40. Medicine USNLo. DAILY MED- VANCOMYCIN HYDROCHLORIDE. 2015.
41. Hicks RW, Hernandez J. Perioperative pharmacology: a focus on vancomycin. Aorn j.93;5:593-596; quiz 597-599. 2011
42. Gupta A, Biyani M, Khaira A. Vancomycin nephrotoxicity: myths and facts. Neth J Med.69;9:379-383. 2011
43. Richter J, Zhou J, Pavlovic D, et al. Vancomycin and to lesser extent tobramycin have vasomodulatory effects in experimental endotoxemia in the rat. Clin Hemorheol Microcirc.46;1:37-49. 2010
44. Roszell S, Jones C. Intravenous administration issues: a comparison of intravenous insertions and complications in vancomycin versus other antibiotics. J Infus Nurs.33;2:112-118. 2010
45. Francois Lebreton RJLW, and Michael S. Gilmore. Enterococcus Diversity, Origins in Nature, and Gut Colonization Boston: Massachusetts Eye and Ear Infirmary2014.
46. Thiercelin M. E. JL. Sur un diplococque saprophyte de l'intestin susceptible de devenir pathogene. C R Seances Soc Biol Fil.5:269-271. 1899
47. Schleifer KH, Kilpper-Bälz R. Transfer of Streptococcus faecalis and Streptococcus faecium to the Genus Enterococcus nom. rev. as Enterococcus faecalis comb. nov. and Enterococcus faecium comb. nov. Int J Syst Evol Microbiol.34;1:31-34. 1984
48. Devriese LA, Pot B, Van Damme L, Kersters K, Haesebrouck F. Identification of Enterococcus species isolated from foods of animal origin. Int J Food Microbiol.26;2:187-197. 1995
49. Noble CJ. Carriage of group D streptococci in the human bowel. J Clin Pathol.31;12:1182-1186. 1978
50. Patel R, Piper KE, Rouse MS, et al. Determination of 16S rRNA sequences of enterococci and application to species identification of nonmotile Enterococcus gallinarum isolates. J Clin Microbiol.36;11:3399-3407. 1998
51. Ruoff KL. Recent taxonomic changes in the genus Enterococcus. Eur J Clin Microbiol Infect Dis.9;2:75-79. 1990
52. Huycke MM, Sahm DF, Gilmore MS. Multiple-drug resistant enterococci: the nature of the problem and an agenda for the future. Emerg Infect Dis.4;2:239-249. 1998
53. Arias CA, Murray BE. The rise of the Enterococcus: beyond vancomycin resistance. Nat Rev Microbiol.10;4:266-278. 2012
54. Gordon S, Swenson JM, Hill BC, et al. Antimicrobial susceptibility patterns of common and unusual species of enterococci causing infections in the United States. Enterococcal Study Group. J Clin Microbiol.30;9:2373-2378. 1992
55. Agudelo Higuita NI, Huycke MM. Enterococcal Disease, Epidemiology, and Implications for Treatment. In: Gilmore MS, Clewell DB, Ike Y, Shankar N. Enterococci: From Commensals to Leading Causes of Drug Resistant Infection. Boston: Massachusetts Eye and Ear Infirmary; 2014.
56. Hidron AI, Edwards JR, Patel J, et al. NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006-2007. Infect Control Hosp Epidemiol.29;11:996-1011. 2008
57. Graninger W, Ragette R. Nosocomial bacteremia due to Enterococcus faecalis without endocarditis. Clin Infect Dis.15;1:49-57. 1992
58. Noskin GA, Peterson LR, Warren JR. Enterococcus faecium and Enterococcus faecalis bacteremia: acquisition and outcome. Clin Infect Dis.20;2:296-301. 1995
59. Patterson JE, Sweeney AH, Simms M, et al. An analysis of 110 serious enterococcal infections. Epidemiology, antibiotic susceptibility, and outcome. Medicine.74;4:191-200. 1995
60. Murdoch DR, Corey GR, Hoen B, et al. Clinical presentation, etiology, and outcome of infective endocarditis in the 21st century: the International Collaboration on Endocarditis-Prospective Cohort Study. Arch Intern Med.169;5:463-473. 2009
61. Anderson DJ, Murdoch DR, Sexton DJ, et al. Risk factors for infective endocarditis in patients with enterococcal bacteremia: a case-control study. Infection.32;2:72-77. 2004
62. McDonald JR, Olaison L, Anderson DJ, et al. Enterococcal endocarditis: 107 cases from the international collaboration on endocarditis merged database. Am J Med.118;7:759-766. 2005
63. Wilson WR, Wilkowske CJ, Wright AJ, Sande MA, Geraci JE. Treatment of streptomycin-susceptible and streptomycin-resistant enterococcal endocarditis. Ann Intern Med.100;6:816-823. 1984
64. Rice LB, Calderwood SB, Eliopoulos GM, Farber BF, Karchmer AW. Enterococcal endocarditis: a comparison of prosthetic and native valve disease. Rev Infect Dis.13;1:1-7. 1991
65. Maki DG, Agger WA. Enterococcal bacteremia: clinical features, the risk of endocarditis, and management. Medicine.67;4:248-269. 1988
66. Malone DA, Wagner RA, Myers JP, Watanakunakorn C. Enterococcal bacteremia in two large community teaching hospitals. Am J Med.81;4:601-606. 1986
67. Shlaes DM, Bouvet A, Devine C, Shlaes JH, al-Obeid S, Williamson R. Inducible, transferable resistance to vancomycin in Enterococcus faecalis A256. Antimicrob Agents Chemother.33;2:198-203. 1989
68. Hoge CW, Adams J, Buchanan B, Sears SD. Enterococcal bacteremia: to treat or not to treat, a reappraisal. Rev Infect Dis.13;4:600-605. 1991
69. Habib G, Lancellotti P, Antunes MJ, et al. 2015 ESC Guidelines for the management of infective endocarditis: The Task Force for the Management of Infective Endocarditis of the European Society of Cardiology (ESC). Endorsed by: European Association for Cardio-Thoracic Surgery (EACTS), the European Association of Nuclear Medicine (EANM). Eur Heart J.36;44:3075-3128. 2015
70. Baddour LM, Wilson WR, Bayer AS, et al. Infective Endocarditis in Adults: Diagnosis, Antimicrobial Therapy, and Management of Complications: A Scientific Statement for Healthcare Professionals From the American Heart Association. Circulation.132;15:1435-1486. 2015
71. Pericas JM, Cervera C, del Rio A, et al. Changes in the treatment of Enterococcus faecalis infective endocarditis in Spain in the last 15 years: from ampicillin plus gentamicin to ampicillin plus ceftriaxone. Clin Microbiol Infect.20;12:O1075-1083. 2014
72. Munita JM, Murray BE, Arias CA. Daptomycin for the treatment of bacteraemia due to vancomycin-resistant enterococci. Int J Antimicrob Agents.44;5:387-395. 2014
73. Balli EP, Venetis CA, Miyakis S. Systematic review and meta-analysis of linezolid versus daptomycin for treatment of vancomycin-resistant enterococcal bacteremia. Antimicrob Agents Chemother.58;2:734-739. 2014
74. Whang DW, Miller LG, Partain NM, McKinnell JA. Systematic review and meta-analysis of linezolid and daptomycin for treatment of vancomycin-resistant enterococcal bloodstream infections. Antimicrob Agents Chemother.57;10:5013-5018. 2013
75. Chuang YC, Wang JT, Lin HY, Chang SC. Daptomycin versus linezolid for treatment of vancomycin-resistant enterococcal bacteremia: systematic review and meta-analysis. BMC Infect Dis.14:687. 2014
76. Britt NS, Potter EM, Patel N, Steed ME. Comparison of the Effectiveness and Safety of Linezolid and Daptomycin in Vancomycin-Resistant Enterococcal Bloodstream Infection: A National Cohort Study of Veterans Affairs Patients. Clin Infect Dis.61;6:871-878. 2015
77. System N. National Nosocomial Infections Surveillance (NNIS) System Report, Data Summary from January 1990-May 1999, issued June 1999. A report from the NNIS System. Am J Infect Control.27;6:520-532. 1999
78. Patterson JE, Sweeney AH, Simms M, et al. An analysis of 110 serious enterococcal infections. Epidemiology, antibiotic susceptibility, and outcome. Medicine (Baltimore).74;4:191-200. 1995
79. Weinstein MP, Towns ML, Quartey SM, et al. The clinical significance of positive blood cultures in the 1990s: a prospective comprehensive evaluation of the microbiology, epidemiology, and outcome of bacteremia and fungemia in adults. Clin Infect Dis.24;4:584-602. 1997
80. Edmond MB, Wallace SE, McClish DK, Pfaller MA, Jones RN, Wenzel RP. Nosocomial bloodstream infections in United States hospitals: a three-year analysis. Clin Infect Dis.29;2:239-244. 1999
81. Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis.39;3:309-317. 2004
82. Gullberg RM, Homann SR, Phair JP. Enterococcal bacteremia: analysis of 75 episodes. Rev Infect Dis.11;1:74-85. 1989
83. Watanakunakorn C, Patel R. Comparison of patients with enterococcal bacteremia due to strains with and without high-level resistance to gentamicin. Clin Infect Dis.17;1:74-78. 1993
84. Britt NS, Potter EM, Patel N, Steed ME. Comparative Effectiveness and Safety of Standard-, Medium-, and High-Dose Daptomycin Strategies for the Treatment of Vancomycin-Resistant Enterococcal Bacteremia Among Veterans Affairs Patients. Clin Infect Dis.64;5:605-613. 2017
85. Hyatt JM, McKinnon PS, Zimmer GS, Schentag JJ. The importance of pharmacokinetic/pharmacodynamic surrogate markers to outcome. Focus on antibacterial agents. Clin Pharmacokinet.28;2:143-160. 1995
86. Rodriguez CA, Agudelo M, Gonzalez JM, Vesga O, Zuluaga AF. An optimized mouse thigh infection model for enterococci and its impact on antimicrobial pharmacodynamics. Antimicrob Agents Chemother.59;1:233-238. 2015
87. Jumah MTB, Vasoo S, Menon SR, De PP, Neely M, Teng CB. Pharmacokinetic/Pharmacodynamic Determinants of Vancomycin Efficacy in Enterococcal Bacteremia. Antimicrob Agents Chemother.62;3. 2018
88. Jung Y, Song KH, Cho J, et al. Area under the concentration-time curve to minimum inhibitory concentration ratio as a predictor of vancomycin treatment outcome in methicillin-resistant Staphylococcus aureus bacteraemia. Int J Antimicrob Agents.43;2:179-183. 2014
89. Paterson DL, Ko WC, Von Gottberg A, et al. International prospective study of Klebsiella pneumoniae bacteremia: implications of extended-spectrum beta-lactamase production in nosocomial Infections. Ann Intern Med.140;1:26-32. 2004
90. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis.40;5:373-383. 1987
91. 衛生福利部國民健康署. 肥胖防治網. 2018; https://obesity.hpa.gov.tw/TC/index.aspx. Accessed 25 Jul, 2018.
92. Reichley RM, Ritchie DJ, Bailey TC. Analysis of various creatinine clearance formulas in predicting gentamicin elimination in patients with low serum creatinine. Pharmacotherapy.15;5:625-630. 1995
93. Institutes CaLS. Performance Standards for Antimicrobial Susceptibility Testing. CLSI M100-ED28. 28 ed2018.
94. 吳明隆, 張毓仁. R軟體在決策樹的應用. 五南圖書出版公司; 2017.
95. Pai MP, Neely M, Rodvold KA, Lodise TP. Innovative approaches to optimizing the delivery of vancomycin in individual patients. Adv Drug Deliv Rev.77:50-57. 2014
96. Rybak M, Lomaestro B, Rotschafer JC, et al. Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Am J Health Syst Pharm.66;1:82-98. 2009
97. Matzke GR, Mcgory RW, Halstenson CE, Keane WF. Pharmacokinetics of vancomycin in patients with various degrees of renal function. Antimicrob Agents Chemother.25;4:433-437. 1984
98. Moellering JRC, Krogstad DJ, Greenblatt DJ. Pharmacokinetics of Vancomycin in Normal Subjects and in Patients with Reduced Renal Function. Rev Infect Dis.3;Supplement_2:S230-S235. 1981
99. Golper TA, Noonan HM, Elzinga L, et al. Vancomycin pharmacokinetics, renal handling, and nonrenal clearances in normal human subjects. Clin Pharmacol Ther.43;5:565-570. 1988
100. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron.16;1:31-41. 1976
101. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med.130;6:461-470. 1999
102. 陳苓怡, 郭美娟, 黃尚志, 蔡哲嘉, 陳鴻鈞. 臨床評估腎臟功能方法之優缺點. 內科學誌.23:34-41. 2012
103. 吳明儒. 評估腎臟功能的方法. 腎臟與透析.19;2. 2007
104. Poggio ED, Wang X, Greene T, Van Lente F, Hall PM. Performance of the modification of diet in renal disease and Cockcroft-Gault equations in the estimation of GFR in health and in chronic kidney disease. J Am Soc Nephrol.16;2:459-466. 2005
105. Rule AD, Larson TS, Bergstralh EJ, Slezak JM, Jacobsen SJ, Cosio FG. Using serum creatinine to estimate glomerular filtration rate: accuracy in good health and in chronic kidney disease. Ann Intern Med.141;12:929-937. 2004
106. Zuo L, Ma YC, Zhou YH, Wang M, Xu GB, Wang HY. Application of GFR-estimating equations in Chinese patients with chronic kidney disease. Am J Kidney Dis.45;3:463-472. 2005
107. Spruill WJ, Wade WE, Cobb HH. Estimating glomerular filtration rate with a modification of diet in renal disease equation: implications for pharmacy. Am J Health Syst Pharm.64;6:652-660. 2007
108. Kirkpatrick CMJ, Duffull SB, Begg EJ. Pharmacokinetics of gentamicin in 957 patients with varying renal function dosed once daily. Br J Clin Pharmacol.47;6:637-643. 1999
109. Al-Kofide H, Zaghloul I, Al-Naim L. Pharmacokinetics of vancomycin in adult cancer patients. J Oncol Pharm Pract.16;4:245-250. 2010
110. Silvain C, Bouquet S, Breux JP, Becq-Giraudon B, Beauchant M. Oral pharmacokinetics and ascitic fluid penetration of ofloxacin in cirrhosis. Eur J Clin Pharmacol.37;3:261-265. 1989
111. Fuglsang S, Henriksen UL, Hansen HB, Bendtsen F, Henriksen JH. Gamma-variate plasma clearance versus urinary plasma clearance of (51) Cr-EDTA in patients with cirrhosis with and without fluid retention. Clin Physiol Funct Imaging.37;6:588-595. 2017
112. Cusack BJ. Pharmacokinetics in older persons. Am J Geriatr Pharmacother.2;4:274-302. 2004
113. Westphal JF, Brogard JM. Clinical pharmacokinetics of newer antibacterial agents in liver disease. Clin Pharmacokinet.24;1:46-58. 1993
114. Moore KP, Aithal GP. Guidelines on the management of ascites in cirrhosis. Gut.55;Suppl 6:vi1-vi12. 2006
115. Klaus S, Herfried T, Vreny T, J MP. Single‐dose ceftriaxone kinetics in liver insufficiency. Clin Pharmacol Ther.36;4:500-509. 1984
116. Shammas FV, Dickstein K. Clinical pharmacokinetics in heart failure. An updated review. Clin Pharmacokinet.15;2:94-113. 1988
117. Waller ES. Pharmacokinetic principles of lidocaine dosing in relation to disease state. J Clin Pharmacol.21;4:181-194. 1981
118. Woosley RL. Pharmacokinetics and pharmacodynamics of antiarrhythmic agents in patients with congestive heart failure. Am Heart J.114;5:1280-1291. 1987
119. Stein GE, Wells EM. The importance of tissue penetration in achieving successful antimicrobial treatment of nosocomial pneumonia and complicated skin and soft-tissue infections caused by methicillin-resistant Staphylococcus aureus: vancomycin and linezolid. Curr Med Res Opin.26;3:571-588. 2010
120. Clemens EC, Chan JD, Lynch JB, Dellit TH. Relationships between vancomycin minimum inhibitory concentration, dosing strategies, and outcomes in methicillin-resistant Staphylococcus aureus bacteremia. Diagn Microbiol Infect Dis.71;4:408-414. 2011
121. Forstner C, Dungl C, Tobudic S, Mitteregger D, Lagler H, Burgmann H. Predictors of clinical and microbiological treatment failure in patients with methicillin-resistant Staphylococcus aureus (MRSA) bacteraemia: a retrospective cohort study in a region with low MRSA prevalence. Clin Microbiol Infect.19;7:E291-E297. 2013
122. Rybak MJ, Vidaillac C, Sader HS, et al. Evaluation of Vancomycin Susceptibility Testing for Methicillin-Resistant Staphylococcus aureus: Comparison of Etest and Three Automated Testing Methods. J Clin Microbiol.51;7:2077-2081. 2013
123. Suzuki Y, Kawasaki K, Sato Y, et al. Is peak concentration needed in therapeutic drug monitoring of vancomycin? A pharmacokinetic-pharmacodynamic analysis in patients with methicillin-resistant staphylococcus aureus pneumonia. Chemotherapy.58;4:308-312. 2012
124. Lodise TP, Drusano GL, Zasowski E, et al. Vancomycin exposure in patients with methicillin-resistant Staphylococcus aureus bloodstream infections: how much is enough? Clin Infect Dis.59;5:666-675. 2014
125. Heintz BH, Matzke GR, Dager WE. Antimicrobial dosing concepts and recommendations for critically ill adult patients receiving continuous renal replacement therapy or intermittent hemodialysis. Pharmacotherapy.29;5:562-577. 2009
126. Matzke G, Dowling T. Dosing concepts in renal dysfunction. Am J Health Syst Pharm.427-443. 2008
127. Thomson M. Micromedex healthcare series: DRUGDEX system—2008. 2008.
128. Trotman RL, Williamson JC, Shoemaker DM, Salzer WL. Antibiotic Dosing in Critically Ill Adult Patients Receiving Continuous Renal Replacement Therapy. Clin Infect Dis.41;8:1159-1166. 2005
129. Aberg J, Gray L, Long J. Infectious dseases handbook. 6th ed2006.
130. Bennett W, Aronoff G, TA G. Drug Prescribing in Renal Failure. ACP. 1994
131. Pea F, Viale P, Pavan F, Furlanut M. Pharmacokinetic considerations for antimicrobial therapy in patients receiving renal replacement therapy. Clin Pharmacokinet.46;12:997-1038. 2007
132. Gupta SK, Eustace JA, Winston JA, et al. Guidelines for the management of chronic kidney disease in HIV-infected patients: recommendations of the HIV Medicine Association of the Infectious Diseases Society of America. Clin Infect Dis.40;11:1559-1585. 2005
133. Cotterill S. Antimicrobial prescribing in patients on haemofiltration. J Antimicrob Chemother.36;5:773-780. 1995
134. Aronoff G, Bennett W, Berns J. Drug Prescribing in Renal Failure: Dosing Guidelines for Adults and Children. 5th ed2007.
135. Scheetz MH, Scarsi KK, Ghossein C, Hurt KM, Zembower TR, Postelnick MJ. Adjustment of antimicrobial dosages for continuous venovenous hemofiltration based on patient-specific information. Clin Infect Dis.42;3:436-437; author reply 437-438. 2006
136. Isla A, Gascon AR, Maynar J, Arzuaga A, Toral D, Pedraz JL. Cefepime and continuous renal replacement therapy (CRRT): in vitro permeability of two CRRT membranes and pharmacokinetics in four critically ill patients. Clin Ther.27;5:599-608. 2005
137. Malone RS, Fish DN, Abraham E, Teitelbaum I. Pharmacokinetics of cefepime during continuous renal replacement therapy in critically ill patients. Antimicrob Agents Chemother.45;11:3148-3155. 2001
138. Kubin C, Dzierba A. The Effects of Continuous Renal Replacement on Anti-infective Therapy in the Critically Ill. J Pharm Pract.18;2:109-117. 2005
139. Mariat C, Venet C, Jehl F, et al. Continuous infusion of ceftazidime in critically ill patients undergoing continuous venovenous haemodiafiltration: pharmacokinetic evaluation and dose recommendation. Crit Care.10;1:R26. 2006
140. Kroh UF, Lennartz H, Edwards DJ, Stoeckel K. Pharmacokinetics of ceftriaxone in patients undergoing continuous veno-venous hemofiltration. J Clin Pharmacol.36;12:1114-1119. 1996
141. Li J, Rayner CR, Nation RL, et al. Pharmacokinetics of colistin methanesulfonate and colistin in a critically ill patient receiving continuous venovenous hemodiafiltration. Antimicrob Agents Chemother.49;11:4814-4815. 2005
142. Garonzik SM, Li J, Thamlikitkul V, et al. Population pharmacokinetics of colistin methanesulfonate and formed colistin in critically ill patients from a multicenter study provide dosing suggestions for various categories of patients. Antimicrob Agents Chemother.55;7:3284-3294. 2011
143. Churchwell MD, Pasko DA, Mueller BA. Daptomycin clearance during modeled continuous renal replacement therapy. Blood Purif.24;5-6:548-554. 2006
144. Burkhardt O, Joukhadar C, Traunmuller F, Hadem J, Welte T, Kielstein JT. Elimination of daptomycin in a patient with acute renal failure undergoing extended daily dialysis. J Antimicrob Chemother.61;1:224-225. 2008
145. Wenisch JM, Meyer B, Fuhrmann V, et al. Multiple-dose pharmacokinetics of daptomycin during continuous venovenous haemodiafiltration. J Antimicrob Chemother.67;4:977-983. 2012
146. Vilay AM, Grio M, Depestel DD, et al. Daptomycin pharmacokinetics in critically ill patients receiving continuous venovenous hemodialysis. Crit Care Med.39;1:19-25. 2011
147. Bergner R, Hoffmann M, Riedel KD, et al. Fluconazole dosing in continuous veno-venous haemofiltration (CVVHF): need for a high daily dose of 800 mg. Nephrol Dial Transplant.21;4:1019-1023. 2006
148. Yagasaki K, Gando S, Matsuda N, et al. Pharmacokinetics and the most suitable dosing regimen of fluconazole in critically ill patients receiving continuous hemodiafiltration. Intensive Care Med.29;10:1844-1848. 2003
149. Dager WE, King JH. Aminoglycosides in intermittent hemodialysis: pharmacokinetics with individual dosing. Ann Pharmacother.40;1:9-14. 2006
150. Sowinski KM, Magner SJ, Lucksiri A, Scott MK, Hamburger RJ, Mueller BA. Influence of hemodialysis on gentamicin pharmacokinetics, removal during hemodialysis, and recommended dosing. Clin J Am Soc Nephrol.3;2:355-361. 2008
151. Fish DN, Teitelbaum I, Abraham E. Pharmacokinetics and pharmacodynamics of imipenem during continuous renal replacement therapy in critically ill patients. Antimicrob Agents Chemother.49;6:2421-2428. 2005
152. Tegeder I, Neumann F, Bremer F, Brune K, Lotsch J, Geisslinger G. Pharmacokinetics of meropenem in critically ill patients with acute renal failure undergoing continuous venovenous hemofiltration. Clin Pharmacol Ther.65;1:50-57. 1999
153. Thalhammer F, Horl WH. Pharmacokinetics of meropenem in patients with renal failure and patients receiving renal replacement therapy. Clin Pharmacokinet.39;4:271-279. 2000
154. Kielstein JT, Czock D, Schopke T, et al. Pharmacokinetics and total elimination of meropenem and vancomycin in intensive care unit patients undergoing extended daily dialysis. Crit Care Med.34;1:51-56. 2006
155. Giles LJ, Jennings AC, Thomson AH, Creed G, Beale RJ, McLuckie A. Pharmacokinetics of meropenem in intensive care unit patients receiving continuous veno-venous hemofiltration or hemodiafiltration. Crit Care Med.28;3:632-637. 2000
156. Krueger WA, Neeser G, Schuster H, et al. Correlation of meropenem plasma levels with pharmacodynamic requirements in critically ill patients receiving continuous veno-venous hemofiltration. Chemotherapy.49;6:280-286. 2003
157. Robatel C, Decosterd LA, Biollaz J, Eckert P, Schaller MD, Buclin T. Pharmacokinetics and dosage adaptation of meropenem during continuous venovenous hemodiafiltration in critically ill patients. J Clin Pharmacol.43;12:1329-1340. 2003
158. Meyer MM, Munar MY, Kohlhepp SJ, Bryant RE. Meropenem pharmacokinetics in a patient with multiorgan failure from Meningococcemia undergoing continuous venovenous hemodiafiltration. Am J Kidney Dis.33;4:790-795. 1999
159. Diaz CR, Kane JG, Parker RH, Pelsor FR. Pharmacokinetics of nafcillin in patients with renal failure. Antimicrob Agents Chemother.12;1:98-101. 1977
160. Arzuaga A, Maynar J, Gascon AR, et al. Influence of renal function on the pharmacokinetics of piperacillin/tazobactam in intensive care unit patients during continuous venovenous hemofiltration. J Clin Pharmacol.45;2:168-176. 2005
161. DelDot ME, Lipman J, Tett SE. Vancomycin pharmacokinetics in critically ill patients receiving continuous venovenous haemodiafiltration. Br J Clin Pharmacol.58;3:259-268. 2004
162. Ariano RE, Fine A, Sitar DS, Rexrode S, Zelenitsky SA. Adequacy of a vancomycin dosing regimen in patients receiving high-flux hemodialysis. Am J Kidney Dis.46;4:681-687. 2005
163. Klansuwan N, Ratanajamit C, Kasiwong S, Wangsiripaisan A. Clearance of vancomycin during high-efficiency hemodialysis. J Med Assoc Thai.89;7:986-991. 2006
164. Launay-Vacher V, Izzedine H, Mercadal L, Deray G. Clinical review: use of vancomycin in haemodialysis patients. Crit Care.6;4:313-316. 2002
165. Pai AB, Pai MP. Vancomycin dosing in high flux hemodialysis: a limited-sampling algorithm. Am J Health Syst Pharm.61;17:1812-1816. 2004
166. Pallotta KE, Manley HJ. Vancomycin use in patients requiring hemodialysis: a literature review. Semin Dial.21;1:63-70. 2008