| 研究生: |
陳振元 Chen, Zhen-Yuan |
|---|---|
| 論文名稱: |
以標準CMOS製程實現逆偏式矽發光二極體與元件設計 Design and realize the reverse biased silicon light emitting diode in standard CMOS process |
| 指導教授: |
李劍
Li, Jian |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 逆偏式矽發光二極體 、單光子雪崩二極體 、光達 |
| 外文關鍵詞: | Reverse-biased silicon light-emitting diode, SPAD, LiDAR |
| 相關次數: | 點閱:64 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文所研究對象為逆偏式矽發光二極體。主要分為三個部分,元件與晶片設計、元件的性能量測以及提出初步整合與應用的實驗架構。第一部分元件與晶片設計,不變動任何製程步驟及添加任何後處理的條件下,使用台積電標準CMOS製程-T18HVG2製作逆偏式矽發光二極體。元件設計是以SPAD元件為基礎並選擇四項研究參數,發光區半徑、p-n接面種類、電極位置、漏斗角度,探討參數對元件的影響及性能並藉由TCAD模擬其各元件的電學性能,如崩潰電壓及衝擊離子化區域。Laker軟體繪製晶片並加入單光子雪崩二極體以利達到本篇論文的最終目標與動機-「整合及降低成本」。第二部分性能量測,針對各元件的I-V Curve、Optical power、Spectrum進行量測,並結合顯微鏡觀察元件不同電流下的發光形狀及分佈,進而推斷垂直式p-n接面影響光功率甚大。第三部分整合與應用,在本次下線晶片中加入單光子雪崩二極體,整合光源與光偵測器發展類似光達之功能並展示商業產品ST的VL53L1x微型光達之應用。最後提出混合兩種增加光功率的結構,希望藉由這兩種提高光功率的效果可以大幅改善逆偏式矽發光二極體的窘境。
The reverse-biased silicon light-emitting diode is research object of the thesis. The first part is to use TSMC 0.18um CMOS high-voltage process to make the reverse-biased silicon light emitting with no change to the processing procedures. All components are based on Single-Photon Avalanche Diode (SPAD) with four design paraments, radius of light-emitting zone, two type of p-n junction, shape and position of contact and funnel angle. The Electrical properties of components such as breakdown voltage and impact ionization are simulated by TCAD. Integrating SPAD are designed on the chip for a application. The second part is performance measurement. All components are measured for I-V Curve, Optical power and Spectrum and observed the shape and distribution of luminescence under microscope with different currents. The inference that vertical p-n junction is good for increasing the optical power. The third part is Integration and Application. The Integrated light source and Photodetector developed a function similar to LiDAR and using VL53L1x TOF Ranging Sensor of STMicroelectronics for an application Finally, we present a new structure with combination two structure which has been raised to improve the optical power.
[1] R. Newman, Visible Light from a Silicon p−n Junction. Physical Review,100(2):pp. 700-703. (1955).
[2] D. K. Gautam, W. S. Khokle, K. B. Garg, Effect of absorption on photon emission from reverse-biased silicon p-n junctions. Solid-State Electronics, Vol. 31, No. 6, pp. 1119-I 121, (1988).
[3] T. Figielski, A. Torum, On the origin of light emitted from reverse biased p–n junctions. International Conference on Physics of Semiconductors, pp.863–868, (1962).
[4] P. A. Wolff, Theory of optical radiation from breakdown avalanches in germanium. Journal of Physics and Chemistry of Solids, Vol. 16, pp. 184-190, (1960).
[5] N. Akil, S. E. Kerns, D. V. Kerns, A. Hoffmann, J-P. Charles, Photon generation by silicon diodes in avalanche breakdown. Applied Physics Letters, 73(7): pp. 871-872, (1998).
[6] Lukas W. Snyman, Herzl Aharoni, Monuko du Plessis, Rudolph B. J. Gouws, Increased efficiency of silicon light-emitting diodes in a standard 1.2-μm silicon complementary metal oxide semiconductor technology. Optical Engineering, 37(7): pp. 2133-2141, (1998).
[7] Kaikai Xu, Guann-pyng Li, A Light-emitting-device (LED) with Monolithic Integration on Bulk Silicon in a Standard CMOS technology. in International Photonics and Optoelectronics Meetings (POEM), (2013).
[8] Kaikai Xu, Current-voltage characteristics and increase in the quantum efficiency of three-terminal gate and avalanche-based silicon LEDs. APPLIED OPTICS, 52(27): pp. 6669-75. (2013).
[9] Zan Dong, et al., Silicon-based LED Display Array in Standard CMOS Technology. 7th IEEE International Conference on Group IV Photonics, pp. 332–334, (2010).
[10] Hsiu-Chih Lee, Cheng-Kuang Liu, Si-based current-density-enhanced light emission and low-operating-voltage light-emitting/receiving designs. Solid-State Electronics, vol. 49, pp. 1172-1178. (2005).
[11] J. Cong, et al., An Efficient Forward-Biased Si CMOS LED With High Optical Power Density and Nonlinear Optical-Power-Current Characteristic. IEEE Photonics Journal, 11(2): pp. 1-10. (2019).
[12] Petrus J. Venter, et al., An 8 × 64 pixel dot matrix microdisplay in 0.35-μm complementary metal-oxide semiconductor technology. Optical Engineering, 51(1), (2012).
[13] Beiju Huang, et al., CMOS monolithic optoelectronic integrated circuit for on-chip optical interconnection. Optics Communications, vol. 284, pp. 3924-3927, (2011).
[14] Lukas W. Snyman, et al., Planar light-emitting electro-optical interfaces in standard silicon complementary metal oxide semiconductor integrated circuitry. Optical Engineering, 41 (12), pp. 3230-3240, (2002).
[15] 劉柏佑. 氧化鎵半導體之應變規與溫度感測器及Si-CMOS單光子感測器之優化與整合. 成功大學航空太空工程學系學位論文. (2020).
[16] 陳冠廷. 基於矽之單光子雪崩式偵測器及其若干設計. 成功大學航空太空工程學系學位論文. (2020).
[17] Donald A. Neamen, Semiconductor Physics and Devices: Basic Principles. 4e, McGrawHill, (2012).
[18] D. Decoster. & J. Harari. Optoelectronic Sensors. pp.57~p.60.ISTE Ltd (2009).
[19] S. M. Sze and K. K. Ng, Physics of semiconductor device. 3rd Edition (2006).
校內:2026-08-18公開