簡易檢索 / 詳目顯示

研究生: 佘威叡
She, Wei-Ruei
論文名稱: 元件結構對高分子薄膜電晶體電特性研究
Effect of device architectures on the electrical properties of polymeric thin film transistors
指導教授: 鄭弘隆
Cheng, Horng-Long
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 75
中文關鍵詞: 有機薄膜電晶體上閘極式緩衝層聚(3-己烷基塞吩)
外文關鍵詞: organic thin film transistor, RR-P3HT, top-gate, buffer layer
相關次數: 點閱:75下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究高立體規則性之有機高分子半導體聚(3-己烷基塞吩) (poly(3-hexylthiophene),RR-P3HT)為主動層之上閘極式薄膜電性晶體的元件特性。首先,利用旋轉塗佈法製作RR-P3HT薄膜當主動層,再於其上堆疊高分子絕緣材料當作介電層,最後鍍上金屬電極當閘極,製作上閘極式電晶體元件。本研究主要進行後續沉積數種高分子絕緣層對RR-P3HT主動層薄膜微結構與半導體特性的影響,並探討各種高分子絕緣層對電晶體元件電特性的影響。
    首先,利用進行高分子絕緣層介電特性研究,由電容-電壓量測得知交聯結合的poly(4-vinylphenol)(C-PVP)高分子適合當主介電層材料,但並不適合直接沉積在RR-P3HT薄膜上,因此本論文聚焦於導入一個高分子緩衝層對RR-P3HT上閘極式電晶體元件的影響,本文使用聚偏氟乙烯 (PVDF)、聚乙烯吡咯烷酮 (PVnP) 、聚甲基丙烯酸甲酯 (PMMA) 、聚乙烯醇(PVA)當做緩衝層,結果指出PVDF當做緩衝層(buffer layer)所製作之上閘極電晶體元件,有最佳載子遷移率可達0.1 cm2/Vs 以上,因此建議覆蓋緩衝層將可有效保護RR-P3HT主動層,製作出高性能元件。
    於第四章,吾人利用紫外-可見光吸收光譜與拉曼光譜進行有無覆蓋高分子絕緣層之RR-P3HT薄膜微結構解析,結果指出使用PVDF當緩衝層可以幫助減緩C-PVP對RR-P3HT的影響,並可幫助到RR-P3HT分子鏈重排,獲致更佳的微結構,有助於載子的傳遞,提供一個上閘極式元件電性改善的合理解釋,而其他的高分子緩衝層則無此效果。

    In this thesis, we studied the thin-film microstructures and electrical characteristic of regioregular poly(3-hexylthiophene) (RR-P3HT)-based organic thin-films transistors (OTFTs) with top-gate structure. First, the RR-P3HT active layer was prepared by solution deposition through a spin-coating technique. Then, the polymeric insulators were coated onto RR-P3HT film and serve as the gate dielectrics. After preparation of the polymeric dielectrics, finally, the metal electrode was deposited upon the dielectric surface and served as a top gate electrode of the OTFT devices. We present a systematic study involving the change of the microstructural and semiconductor properties of the RR-P3HT active layer in the OTFT devices during subsequent fabrication of solution processed polymeric gate dielectrics.
    First, the dielectric characteristics of polymer insulators were studied by capacitance-voltage measurements. Here, we chose a crosslinked-poly(vinylphenol) (C-PVP) as the main gate dielectric due to its good capacitance properties. We demonstrated that a high mobility of above 0.1 cm2/Vs in RR-P3HT-based top-gate OTFTs with a C-PVP gate dielectric can be achieved by introducing particular polymeric buffer layers, i.e., poly(vinylidene difluoride) (PVDF). Additionally, we also made other polymer insulators to use in a buffer layer upon the RR-P3HT films, such as poly(vinyl pyrrolidone) (PVnP), poly(methyl methacrylate) (PMMA), and poly(vinly alcohol) (PVA); unfortunately, we could not observe significant structural and charge mobility improvements in the RR-P3HT-based tog-gate OTFT devices.
    In chapter 4, we studied the structural properties of RR-P3HT films before and after covering various multilayer stacks of polymer insulators by UV-Vis absorption and Raman spectroscopy. The results revealed that covering the PVDF/C-PVP bilayer dielectrics resulted in a more ordered structure of RR-P3HT films. To the contrary, we could not observe significant structural improvements of RR-P3HT films when other polymer insulators, e.g., PVnP, PMMA, and PVA, were used as the buffer layer. The observations provided a reasonable explanation for better device performance of RR-P3HT top-gate OTFTs when using PVDF as a buffer layer. Consequently, we suggested that the used buffer layer in top-gate RR-P3HT OTFTs played an important role, not only in RR-P3HT thin film structures but also the corresponding OTFT characterizations.

    中文摘要..................................................I Abstract................................................III 誌謝......................................................V 目錄.....................................................VI 表目錄................................................VIII 圖目錄..............................................IX 第1章:緒論.............................................1 1- 1 前言..............................................................................................1 1- 2 有機薄膜電晶體概論.....................................................................2 1- 2-1 導論....................................................................................2 1- 2-2 元件結構............................................................................4 1- 2-3 載子傳輸理論....................................................................8 1- 2-4 特性公式..........................................................................10 1- 3 研究動機.......................................................................................13 第2章:實驗方法與元件製備...............................................14 2-1 有機材料........................................................................................14 2-2 實驗儀器........................................................................................18 2-3 元件製備........................................................................................20 2-4 電性分析........................................................................................24 第3章聚(3-己烷基塞吩)元件特性之研究.............................25 3-1 高分子絕緣層特性研究.................................................25 3-2 覆蓋高分子緩衝層對聚(3-己烷基塞吩)元件結構影響...........................................................................................................28 3-2-1 下閘極薄膜電晶體在有無修飾層情形比較.............................28 3-2-2 各高分子緩衝層對上閘極結構元件電特性.........................39 3-3 低沸點主動層溶劑的上閘極元件特性.................................49 第4章: 有無覆蓋高分子絕緣層之聚3-己烷基噻吩的薄膜性質分析.................................................................................55 4-1 紫外-可見光吸收光譜分析......................................55 4-2 拉曼光譜(Raman)分析.........................................................63 第5章 總結與未來展望.........................................................71 參考文獻.................................................................................73

    [1] A. G. MacDiarmid, A. J. Epstein, “The concept of secondary doping as applied to polyaniline” Synth. Met. 65, p.103, 1994.

    [2] A. Facchetti, M.-H. Yoon, T. J. Marks, “Gate dielectrics for
    organicfiels-effect transistors: new oppurtunities for organic electronics” Adv. Mater. 17, p.1705, 2005.

    [3] M. J. Panzer, C. D. Frisbie, “High carrier density and metallic conductivity in Poly(3-hexylthiophene) achieved by electrostatic charge injection” Adv. Funct. Mater. 16, p.1051, 2006.

    [4] F. Xue, Z. Liu, Y. Su, K. Varahramyan, “Inkjet printed silver source/drain electrodes forlow-cost polymer thin film transistors” Microelectron Eng. 83, p.298, 2006.

    [5] J. Zhou, K. Yang, J. Zhou, Y. Liu, J. Peng, Y. Cao, “Poly (3-hexylthiophene) thin-film transistors with dual insulator layers” Jpn. J. Appl. Phys. 46, p.913, 2007.

    [6] S. Mototani, S. Ochiai, X. Wang, K. Kojima, A. Ohashi, T. Mizutani “Performance of organic field-effect transistors with Poly(3- hexylthiophene)as the semiconductor layer and Poly(4-vinylphenol) thin film untreatedand treated by hexamethyldisilazane as the gate insulator” Jpn. J. Appl. Phys. 47, p.496, 2008.

    [7] J. H. Park, E. Kim, “Effect of electric-field-assisted thermal annealing of poly(4-vinylphenol) film on its dielectric constant” Appl.Phys.Lett. 92, p.103311, 2008.

    [8] R. C. G. Naber, M. Mulder, B. de Boer, P. W. M. Blom, D. M. de Leeuw,“High charge density and mobility in poly(3-hexylthiophene) using a polarizable gate dielectric” Org. Electron. 7, p.132, 2006.

    [9] M. Estrada, I. Mejia, A. Cerdeira, B. In~iguez, “MIS polymeric
    structures and OTFTs using PMMA on P3HT layers” Solid-State
    Electronics. 52, p.53, 2008.

    [10] J. Zaumseil, C. L. Donley, J. S. Kim, R. H. Friend, H. Sirringhaus, “Efficient top-gate, ambipolar, light-emitting field-effect transistors
    based on a green-light-emitting polyfluorene” Adv. Mater. 18,
    p.2708, 2006.

    [11] H. G. O. Sandberg, T. G. Bäcklund, R. Österbacka, H. Stubb, “High-performance all-polymer transistor utilizing a hygroscopic insulator” Adv. Mater. 16, p.1112, 2004.

    [12] T. G. Bäcklund, R. Österbacka, H. Stubb, J. Bobacka, A. Ivaska,
    “Operating principle of polymer insulator organic thin-film
    transistors exposed to moisture” J. Appl. Phys. 98, p.74504, 2005.

    [13] H. G. O. Sandberg, T. G. Backlund, R. O. Sterbacka, M. Shkunov, D. Sparrowe, I. McCulloch, H. Stubb, “Insulators and device geometryin polymer field effect transistors” Org. Electron. 6, p.421, 2005.

    [14] C. Bartic, H. Jansen, A. Campitelli, S. Borghs, “Ta2O5 as gate dielectric material for low-voltage organic thin-film transistors” Org. Electron. 3, p.65, 2002.

    [15] F. Maddalena, M. Spijkman, J. J. Brondijk, P. Fonteijn, F. Brouwer, J. C. Hummelen, D. M. de Leeuw, P. W. M. Blom, B. de Boer “Device characteristics of polymer dual-gate field-effect transistors” Org. Electron. 9, p.839, 2008.

    [16] M. Estrada, I. Mejı’a, A. Cerdeira, J. Pallares, L. F. Marsal, B. Iniguez “Mobility model for compact device modeling of OTFTs madewith different materials” Solid-State Electronics . 52, p.787, 2008.

    [17] J. Clark, C. Silva, R. H. Friend, F. C. Spano “Role of intermolecular coupling in the photophysics of disordered organic semiconductors: aggregate emission in regioregular polythiophene” Phys. Rev. Lett. 98,
    p.206406, 2007.
    [18] W. Barford, “Exciton transfer integrals between polymer chains”
    J.Chem.Phys. 126, p.134905, 2007.

    [19] G. Louarn, M. Trznadel, J. P. Buisson, J. Laska, A. Pron, M. Lapkowskiand, S. Lefrant, “Raman spectroscopic studies of regioregular poly(3-alkylthiophenes)” J. Phys. Chem. 100, p.12532, 1996.

    [20] A. Sakamoto, Y. Furukawa, M. Tasumi, “Infrared and Raman studies of Poly(pheny1ene vinylene) and its model compounds” J. Phys. Chem. 96, p.1490, 1992.

    下載圖示 校內:2019-08-28公開
    校外:2019-08-28公開
    QR CODE