簡易檢索 / 詳目顯示

研究生: 沈澔軒
Shen, Hao-Xuan
論文名稱: 利用擴張晶格法分析聲子晶體之偽自旋拓樸邊緣態
Topological pseudo-spin edge states of phononic crystals via zone folding
指導教授: 陳聯文
Chen, Lien-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 102
中文關鍵詞: 聲子晶體拓樸絕緣體擴張晶格雙狄拉克點
外文關鍵詞: phononic crystal, topological insulator, zone-folding, double dirac point
相關次數: 點閱:63下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文利用擴張晶格聲子晶體,在縱波/聲波下基於量子自旋霍爾效應之理論,利用有限元素法軟體計算週期結構,求得其能帶結構,接下來藉由改變晶格中散射柱的大小來實現拓樸不等價之聲子晶體,之後將兩拓樸不等價聲子晶體組合製造出界面,以超晶胞法分析其能帶結構並且找出邊緣模態,再利用邊緣摸態設計不同界面及傳輸的路徑,驗證所設計的結構具有良好的穿透率且可抑制後向散射等波傳特性,並且與一般缺陷型聲子晶體做比較,最後再結合共振腔的特性,討論當拓樸波導與共振腔結合時,共振腔對於拓樸波導的波傳行為產生的影響,並且與不同的共振腔做比較,將特定頻率的波從波導中分離出來,有關其結果可應用於聲波濾波器。

    In this thesis, we propose zone-folding phononic crystal in order to realize the Quantum spin Hall effect in the sound wave system. We calculated the band structure by finite element method. Next, we can get two topologically distinct structure by changing the geometry the scattering rod. Afterward, we utilize two different topologically distinct phononic to manufacture the interface and analysis the band structure by supercell method. The edge mode can be found and we can utilize it to design different interface or transmission path. Compare with defect mode, the edge mode can be verified not only high transmission but also immune backscattering behavior. Finally, we discuss the influence of the resonant cavity on the wave propagation behaviour topological waveguide combined with resonant cavity, and compare with different resonant cavity to separate the wave of specific frequency
    Form the waveguide. The result can be applied to acoustic wave filters

    中文摘要 Ⅰ 英文摘要 Ⅱ 誌謝 Ⅹ 目錄 ⅩⅠ 圖目錄 ⅩⅣ 符號 ⅩⅩ 第一章 緒論 1 1.1前言 1 1.2 文獻回顧 1 1.2.1聲子晶體 1 1.2.2拓樸學與量子霍爾效應 2 1.2.3量子自旋霍爾效應和量子能谷霍爾效應 3 1.2.4擴張晶格與區域折疊 3 1.3本文架構 4 第二章 理論與數值方法 8 2.1前言 8 2.2固態物理學之晶體理論 8 2.2.1基本定義 8 2.2.2實晶格與倒晶格(Reciprocal Lattice) 9 2.2.3布洛赫定理(Bloch Theorem)與布里淵區(Brillouin Zones) 10 2.2.4擴張晶格與區域折疊 11 2.3有限元素法 11 2.4拓樸學(Topology) 15 2.4.1能帶理論(Band Theory) 15 2.4.2貝里相位(Berry phase)與陳數(Chern number) 16 2.5量子霍爾效應簡介 17 2.5.1量子霍爾效應 18 2.5.2量子自旋霍爾效應 18 2.5.3量子能谷霍爾效應 19 第三章 擴張晶格之參數討論及拓樸相變 26 3.1前言 26 3.2 原始模型的建立及能帶分析 26 3.3改變參數之能帶分析 27 3.3.1 改變散射柱材料之能帶分析 27 3.3.2 改變背景材料之能帶分析 27 3.3.3 改變散射柱邊長之能帶分析 27 3.4 量子自旋霍爾效應之拓樸相變 28 3.4.1. 聲子晶體之拓樸分析 28 3.4.2. 邊體關係圖(Bulk correspondece)之分析 28 3.5 邊緣模態與石墨烯界面 29 3.5.1 Zigzag界面之邊體關係圖 29 3.5.2 Armchair界面之邊體關係圖 29 3.5.3不同模型組成的Zigzag界面與邊體關係圖 30 3.5.4 不同模型組成的Armchair界面與邊體關係圖 30 第四章 具拓樸保護邊緣模態之波傳分析 45 4.1 前言 45 4.2 Zigzag界面之全波模擬 45 4.2.1 直線Zigzag界面全波分析 45 4.2.2 Z字型Zigzag界面全波分析 46 4.2.3 缺陷及無序Zigzag界面全波分析 46 4.2.4 偽自旋效應及單向傳播 47 4.3 Armchair界面之全波模擬 47 4.3.1 直線Armchair界面全波分析 47 4.3.2 Z字型Armchair界面全波分析 47 4.3.3 缺陷及無序Armchair界面全波分析 48 4.4 聲子晶體單一波導與拓樸型波導之比較 48 4.4.1 一般型聲子晶體 48 4.5 聲子晶體共振腔的耦合與應用 49 4.5.1 拓樸型波導耦合進共振腔 49 4.5.2 耦合波導之應用 50 第五章 綜合討論與未來展望 95 5.1綜合討論 95 5.2未來展望 96 參考文獻 97

    [1] Brillouin, Leon. "Wave propagation in periodic structures: electric filters and crystal lattices." (1953).
    [2] Yablonovitch, Eli, and T. J. Gmitter. "Photonic band structure: The face-centered-cubic case." Physical Review Letters 63.18 (1989): 1950.
    [3] Cremer, L., and H. O. Leilich. "Zur theorie der biegekettenleiter." Archiv der elektrischen Ubertragung 7 (1953): 261-270.
    [4] Heckl, Manfred A. "Investigations on the vibrations of grillages and other simple beam structures." The Journal of the Acoustical Society of America 36.7 (1964): 1335-1343.
    [5] Kushwaha, Manvir S., et al. "Theory of acoustic band structure of periodic elastic composites." Physical Review B 49.4 (1994): 2313.
    [6] Kushwaha, M. S., and P. Halevi. "Band‐gap engineering in periodic elastic composites." Applied Physics Letters 64.9 (1994): 1085-1087.
    [7] Plihal, Martin, et al. "Two-dimensional photonic band structures." Optics communications 80.3-4 (1991): 199-204.
    [8] Plihal, M., and A. A. Maradudin. "Photonic band structure of two-dimensional systems: The triangular lattice." Physical Review B 44.16 (1991): 8565.
    [9] Wang, Xindong, et al. "Multiple-scattering theory for electromagnetic waves." Physical Review B 47.8 (1993): 4161.
    [10] Thouless, David J., F. Duncan M. Haldane, and J. Michael Kosterlitz. "The Nobel prize in physics 2016." CURRENT SCIENCE 111.8 (2016): 1293.
    [11] Taflove, Allen, and Susan C. Hagness. Computational electrodynamics: the finite-difference time-domain method. Artech house, 2005.
    [12] Dutcher, J. R., et al. "Surface-grating-induced zone folding and hybridization of surface acoustic modes." Physical review letters 68.16 (1992): 2464.
    [13] Ahn, Young Kwan, et al. "Dispersion analysis with 45°-rotated augmented supercells and applications in phononic crystal design." Wave Motion 61 (2016): 63-72.
    [14] 知乎(2014-06-07)。什麼是分數量子霍爾效應?每日頭條。民107年6月20日,取自:https://kknews.cc/zh-mo/science/yn6r2k.html
    [15] Murakami, Shuichi, Naoto Nagaosa, and Shou-Cheng Zhang. "Dissipationless quantum spin current at room temperature." Science 301.5638 (2003): 1348-1351.
    [16] McCann, Edward, and Vladimir I. Fal’ko. "Landau-level degeneracy and quantum Hall effect in a graphite bilayer." Physical review letters 96.8 (2006): 086805.
    [17] Laughlin, Robert B. "Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations." Physical Review Letters 50.18 (1983): 1395.
    [18] Murakami, Shuichi, Naoto Nagaosa, and Shou-Cheng Zhang. "Dissipationless quantum spin current at room temperature." Science 301.5638 (2003): 1348-1351.
    [19] 維基百科編者.”維格納賽茲晶胞” 維基百科,自由的百科全書
    [20] Weng, Hongming, et al. "Quantum anomalous Hall effect and related topological electronic states." Advances in Physics 64.3 (2015): 227-282.
    [21] Murakami, Shuichi, Naoto Nagaosa, and Shou-Cheng Zhang. "Dissipationless quantum spin current at room temperature." Science 301.5638 (2003): 1348-1351.
    [22] Yablonovitch, Eli. "Inhibited spontaneous emission in solid-state physics and electronics." Physical review letters 58.20 (1987): 2059.
    [23] Kushwaha, Manvir S., et al. "Acoustic band structure of periodic elastic composites." Physical review letters 71.13 (1993): 2022.
    [24] Bousfia, A., et al. "Omnidirectional phononic reflection and selective transmission in one-dimensional acoustic layered structures." Surface science 482 (2001): 1175-1180.
    [25] Yeh, Jia-Yi. "Control analysis of the tunable phononic crystal with electrorheological material." Physica B: Condensed Matter 400.1-2 (2007): 137-144.
    [26] Martínez-Sala, Rosa, et al. "Sound attenuation by sculpture." nature 378.6554 (1995): 241-241.
    [27] Huang, Zi-Gui. "Silicon-based filters, resonators and acoustic channels with phononic crystal structures." Journal of Physics D: Applied Physics 44.24 (2011): 245406.
    [28] Wu, Fugen, et al. "Point defect states in two-dimensional phononic crystals." Physics Letters A 292.3 (2001): 198-202.
    [29] Zhang, Xin, et al. "Defect states in 2D acoustic band-gap materials with bend-shaped linear defects." Solid state communications 130.1-2 (2004): 67-71.
    [30] Wu, Xiaoxiao, et al. "Direct observation of valley-polarized topological edge states in designer surface plasmon crystals." Nature communications 8.1 (2017): 1-9.
    [31] Yang, Yahui, Zhaoju Yang, and Baile Zhang. "Acoustic valley edge states in a graphene-like resonator system." Journal of Applied Physics 123.9 (2018): 091713.
    [32] Li, Yan, and Jun Mei. "Double Dirac cones in two-dimensional dielectric photonic crystals." Optics express 23.9 (2015): 12089-12099.
    [33] Torrent, Daniel, Didier Mayou, and José Sánchez-Dehesa. "Elastic analog of graphene: Dirac cones and edge states for flexural waves in thin plates." Physical Review B 87.11 (2013): 115143.
    [34] Hatsugai, Yasuhiro. "Chern number and edge states in the integer quantum Hall effect." Physical review letters 71.22 (1993): 3697.
    [35] Klitzing, K. V., Gerhard Dorda, and Michael Pepper. "New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance." Physical Review Letters 45.6 (1980): 494.
    [36] Bernevig, B. Andrei, Taylor L. Hughes, and Shou-Cheng Zhang. "Quantum spin Hall effect and topological phase transition in HgTe quantum wells." science 314.5806 (2006): 1757-1761.
    [37] König, Markus, et al. "Quantum spin Hall insulator state in HgTe quantum wells." Science 318.5851 (2007): 766-770.
    [38] Sheng, L., et al. "Nondissipative spin Hall effect via quantized edge transport." Physical review letters 95.13 (2005): 136602.
    [39] Haldane, F. D. M., and S. Raghu. "Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry." Physical review letters 100.1 (2008): 013904.
    [40] Ni, Xu, et al. "Topologically protected one-way edge mode in networks of acoustic resonators with circulating air flow." New Journal of Physics 17.5 (2015): 053016.
    [41] Khanikaev, Alexander B., et al. "Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice." Nature communications 6.1 (2015): 1-7.
    [42] Zhang, Xiangdong, and Zhengyou Liu. "Extremal transmission and beating effect of acoustic waves in two-dimensional sonic crystals." Physical review letters 101.26 (2008): 264303.
    [43] Torrent, Daniel, and José Sánchez-Dehesa. "Acoustic analogue of graphene: observation of Dirac cones in acoustic surface waves." Physical review letters 108.17 (2012): 174301.
    [44] Souslov, Anton, et al. "Topological sound in active-liquid metamaterials." Nature Physics 13.11 (2017): 1091-1094.
    [45] Sheng, D. N., et al. "Quantum spin-Hall effect and topologically invariant Chern
    numbers." Physical review letters 97.3 (2006): 036808.
    [46] Ma, Tzuhsuan, et al. "Guiding electromagnetic waves around sharp corners: topologically protected photonic transport in metawaveguides." Physical review letters 114.12 (2015): 127401.
    [47] He, Cheng, et al. "Topological phononic states of underwater sound based on coupled ring resonators." Applied Physics Letters 108.3 (2016): 031904.
    [48] Zhang, Zhiwang, et al. "Topological creation of acoustic pseudospin multipoles in a flow-free symmetry-broken metamaterial lattice." Physical review letters 118.8 (2017): 084303.
    [49] Deng, Yuanchen, et al. "Observation of zone folding induced acoustic topological insulators and the role of spin-mixing defects." Physical Review B 96.18 (2017): 184305.
    [50] Sepkhanov, R. A., Johan Nilsson, and C. W. J. Beenakker. "Proposed method for detection of the pseudospin-1 2 Berry phase in a photonic crystal with a Dirac spectrum." Physical Review B 78.4 (2008): 045122.
    [51] Dong, Jian-Wen, et al. "Valley photonic crystals for control of spin and topology." Nature materials 16.3 (2017): 298-302.
    [52] Huo, Shao-yong, et al. "Simultaneous multi-band valley-protected topological edge states of shear vertical wave in two-dimensional phononic crystals with veins." Scientific reports 7.1 (2017): 1-8.
    [53] Burkov, A. A., and Leon Balents. "Weyl semimetal in a topological insulator multilayer." Physical review letters 107.12 (2011): 127205.
    [54] Süsstrunk, Roman, and Sebastian D. Huber. "Observation of phononic helical edge states in a mechanical topological insulator." Science 349.6243 (2015): 47-50.
    [55] Chaunsali, Rajesh, Chun-Wei Chen, and Jinkyu Yang. "Subwavelength and directional control of flexural waves in zone-folding induced topological plates." Physical Review B 97.5 (2018): 054307.
    [56] Zhang, Lifa, et al. "Topological nature of the phonon Hall effect." Physical review letters 105.22 (2010): 225901.
    [57] Serra-Garcia, Marc, et al. "Observation of a phononic quadrupole topological insulator." Nature 555.7696 (2018): 342-345.
    [58] Wang, Mudi, et al. "Valley physics in non-hermitian artificial acoustic boron nitride." Physical Review Letters 120.24 (2018): 246601.
    [59] Zhang, Xiujuan, et al. "Topological sound." Communications Physics 1.1 (2018): 1-13.

    下載圖示 校內:2025-08-01公開
    校外:2025-08-01公開
    QR CODE