| 研究生: |
林佳諭 Lin, Chia-Yu |
|---|---|
| 論文名稱: |
以食品級界面活性劑系統輔助水蒸餾萃取檸檬精油之研究 Study on Extraction of Lemon Oil by Hydrodistillation Enhanced with Food-grade Surfactants |
| 指導教授: |
陳炳宏
Chen, Bing-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 148 |
| 中文關鍵詞: | 檸檬精油 、非離子型界面活性劑 、萃取 、反應曲面法 、生物活性 |
| 外文關鍵詞: | Lemon oil, Nonionic surfactant, Extraction, Optimization, Bioactivity |
| 相關次數: | 點閱:134 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
檸檬主要取其果汁做為飲食用途,除了果肉之外,果皮的重量佔超過整顆檸檬一半的重量,隨著檸檬產量不斷提高,果皮的再利用也漸漸受到重視。而檸檬精油儲存於果皮的油胞皮層內,以萜烯類為主要成分,由於具有芳香氣味以及多種生物活性,在應用層面十分廣泛,例如芳香療法、化妝品、食品、製藥等產業中都非常受歡迎,而精油的市場動向受到消費者對於天然產品的追求,使得檸檬精油需求量大增。因此本研究目的為提升檸檬精油萃取效率,並期望檸檬精油有良好的應用性,故選擇水蒸餾法萃取精油,使用食品級界面活性劑輔助以提高萃取效能,並考量臨界微胞濃度、精油溶解度等作為篩選界劑的指標,同時透過反應曲面法,使萃取製程參數能有系統地達到最佳化。在應用方面,鑒於檸檬精油天然無毒且具有生物活性,探討其抗菌及抗氧化性質。
由溶解度測試中得到對精油溶解度較佳的界劑系統為Tergitol 15-S-12以及Tween 40/Tween 85重量比為3:1。經過實驗設計得到界劑輔助萃取的最佳化條件:Tergitol 15-S-12濃度為2728 ppm、萃取時間為187分鐘、液固重量比為17.12;驗證實驗也證實反應曲面法所建立模型的預測性;以動力學模擬萃取製程,顯示添加界劑輔助組有較高的質傳係數,能夠改善萃取效能,且於最佳化條件下產率可提升約1.75倍;以GC-FID分析精油中的七種主成分,比較不同精油與萃取方法之間的組成差異,結果表明透過界劑輔助與一般水蒸餾法成分並無明顯差異;在乳液穩定性測試中,Pluronic 123/Tween 80及Tergitol 15-S-12界劑溶液配方具有良好的穩定性及可包覆較高精油含量;抑菌活性實驗結果顯示,檸檬精油對E. coli與S. aureus產生抗菌性,且效果優於市售精油,而精油成分中又以檸檬醛之抗菌效果最好;抗氧化試驗可得知自行萃取檸檬精油清除DPPH自由基的能力優於市售檸檬精油。
With the continuous growth in the production of lemons, making use of the lemon peel has gradually received attention, not only for reduction of agrowaste but also for valorization of lemon produces. Thanks to the good biological activities and the pursuit of natural products by customers, the wide applications of lemon oil (LO) have greatly increased its demand. Hence, the efficiency of extracting lemon oil becomes a concerning topic. In this study, surfactant-enhanced-hydrodistillation with nonionic surfactants was employed to improve the yield of LO extraction, and, likewise, to obtain LO in an easy and eco-friendly approach. Considering suitable surfactants, the capability of solubilization in LO with different types of surfactants were discussed. Also, response surface methodology (RSM) was applied to systematically optimize the parameters of the extraction process, which were surfactant concentration, extraction time, and liquid-to-solid ratio. For the broad applicability of LO, the antibacterial and antioxidant property of LO was evaluated. Moreover, the proper formulations and stability of LO emulsions were investigated.
Results showed that surfactant-enhanced-hydrodistillation was a promising technique for extraction of LO. The optimal operating condition was 2728 ppm as the concentration of Tergitol 15-S-12, extraction time of 187 min, and with a ratio of liquid/solid at 17.12. The confirmation experiment verified the accuracy of the RSM model and showed the yield could be increased up to 1.75 times. A kinetics model simulated the extraction process successfully and displayed a higher mass transfer coefficient in the presence of surfactant assisting. Composition analysis by GC-FID indicated no discernible difference between LOs from the hydrodistillation processes with surfactants or not. The antibacterial test illustrated a good activity of LO against E. coli and S. aureus, even better than commercial LO (CLO). In DPPH radical scavenging assay, LO had exceptional antioxidant activity than CLO. A microemulsion system could form in more amounts of LO with Pluronic 123 /Tween 80 or Tergitol 15-S-12 surfactant solution and maintain its stability for more than 28 days.
刈米孝夫. (1989). 界面活性劑的原理與應用: 高立圖書有限公司.
行政院農業委員會. (2019). 農業品生產量值統計. Retrieved from https://kmweb.coa.gov.tw/theme_data.php?theme=production_map&id=152
何振隆, & 蘇裕昌. (2008). 精油之抗菌活性. 林業研究專用, 15(3), 31–37.
李文豪. (2019). 臺灣常見香酸柑橘介紹. 高雄區農業專訊(109), 12-14.
李輝煌. (2004). 田口方法-品質設計的原理與實務. 台北: 高立圖書有限公司.
易光輝, 王曉芬, & 李依倩. (2008). 精油之化學基礎與實務應用: 華杏.
陳右人, 邱祝櫻, 阮素芬, & 李文豪. (2017). 柑橘類的產期調節. 臺中區農業改良場特刊, 59-89.
陳彥如. (2020). 以界面活性劑輔助水蒸餾萃取檸檬精油及應用之研究. 成功大學化學工程學系學位論文, 1-110.
傅維萱. (2014). 以非離子型界面活性劑及超臨界二氧化碳萃取檸檬皮精油之研究. 成功大學化學工程學系學位論文, 1-96.
黃莉貽. (2017). 以食品級界面活性劑萃取檸檬皮精油及其應用之研究. 成功大學化學工程學系學位論文, 1-141.
楊沛子. (2018). 反應曲面法設計界面活性劑萃取茶樹精油最佳化之研究. 成功大學化學工程學系學位論文, 1-102.
廖信昌. (1998). 高屏地區檸檬重要病蟲害種類及其防治. 高雄區農業專訊(28), 13-17.
趙承琛. (1993). 界面科學基礎: 復文書局.
蔡榮哲. (2005). 柑橘類果皮加工利用. Paper presented at the 台灣柑橘產業發展研討會.
黎正中. (2015). 實驗設計與分析(二版): 高立圖書有限公司.
蕭文龍. (2009). 多變量分析: 碁峰.
聯合國糧食及農業組織(FAO). (2019). Production of Crops in World. Retrieved from http://www.fao.org/faostat/en/#data/QC
謝博銓. (2012). 精油的奧秘. 科學發展, 469, 6–13.
魏宇晨. (2012). 以非離子型界面活性劑萃取檸檬皮精油之研究. 成功大學化學工程學系學位論文, 1-72.
蘇朝墩. (2009). 六標準差: 前程文化.
Acharya, T. (2018). E-TEST (Epsilometer test): Principle, purpose, procedure, results and interpretations. Diakses Pada Tanggal, 1.
Agneta, M., Zhaomin, L., Chao, Z., & Gerald, G. (2019). Investigating synergism and antagonism of binary mixed surfactants for foam efficiency optimization in high salinity. Journal of Petroleum Science and Engineering, 175, 489-494.
Al-Jabri, N. N., & Hossain, M. A. (2014). Comparative chemical composition and antimicrobial activity study of essential oils from two imported lemon fruits samples against pathogenic bacteria. Beni-Suef University Journal of Basic and Applied Sciences, 3(4), 247-253.
Ali, B., Al-Wabel, N. A., Shams, S., Ahamad, A., Khan, S. A., & Anwar, F. (2015). Essential oils used in aromatherapy: A systemic review. Asian Pacific Journal of Tropical Biomedicine, 5(8), 601-611.
Amiri, A., Mottaghipisheh, J., Jamshidi-Kia, F., Saeidi, K., Vitalini, S., & Iriti, M. (2020). Antimicrobial Potencies of Major Functional Foods’ Essential Oils in Liquid and Vapor Phases: A Short Review. Applied Sciences, 10(22), 8103.
Armenta, S., Garrigues, S., & de la Guardia, M. (2008). Green analytical chemistry. TrAC Trends in Analytical Chemistry, 27(6), 497-511.
Azmir, J., Zaidul, I. S. M., Rahman, M., Sharif, K., Mohamed, A., Sahena, F., . . . Omar, A. (2013). Techniques for extraction of bioactive compounds from plant materials: A review. Journal of food engineering, 117(4), 426-436.
Azum, N., Rub, M. A., Asiri, A. M., Marwani, H., & Akram, M. (2020). Synergistic interaction between anti-allergic drug and cationic/anionic surfactants–Experimental and theoretical analysis. Journal of Saudi Chemical Society, 24(9), 683-692.
Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of pharmaceutical analysis, 6(2), 71-79.
Banat, I. M., Makkar, R. S., & Cameotra, S. S. (2000). Potential commercial applications of microbial surfactants. Applied microbiology and biotechnology, 53(5), 495-508.
Baratta, M. T., Dorman, H. D., Deans, S. G., Figueiredo, A. C., Barroso, J. G., & Ruberto, G. (1998). Antimicrobial and antioxidant properties of some commercial essential oils. Flavour and Fragrance Journal, 13(4), 235-244.
Barba, F. J., Zhu, Z., Koubaa, M., Sant'Ana, A. S., & Orlien, V. (2016). Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: A review. Trends in Food Science & Technology, 49, 96-109.
Bergström, M., & Eriksson, J. C. (2004). Synergistic effects in binary surfactant mixtures. Trends in Colloid and Interface Science XVI, 16-22.
Berne, B. J., & Pecora, R. (2000). Dynamic light scattering: with applications to chemistry, biology, and physics: Courier Corporation.
Bouzenna, H., Hfaiedh, N., Giroux-Metges, M.-A., Elfeki, A., & Talarmin, H. (2017). Biological properties of citral and its potential protective effects against cytotoxicity caused by aspirin in the IEC-6 cells. Biomedicine & Pharmacotherapy, 87, 653-660.
Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—a review. International journal of food microbiology, 94(3), 223-253.
Ceccarelli, I., Lariviere, W. R., Fiorenzani, P., Sacerdote, P., & Aloisi, A. M. (2004). Effects of long-term exposure of lemon essential oil odor on behavioral, hormonal and neuronal parameters in male and female rats. Brain research, 1001(1-2), 78-86.
Charchari, S., & Abdelli, M. (2014). Enhanced Extraction by Hydrodistillation of Sage (Salvia officinalis L.) Essential Oil Using Water Solutions of Non-ionic Surfactants. Journal of Essential Oil Bearing Plants, 17(6), 1094-1099.
Chemat, F. (2012). Microwave-assisted extraction for bioactive compounds: Springer.
Chemat, F., Abert-Vian, M., Fabiano-Tixier, A. S., Strube, J., Uhlenbrock, L., Gunjevic, V., & Cravotto, G. (2019). Green extraction of natural products. Origins, current status, and future challenges. TrAC Trends in Analytical Chemistry, 118, 248-263.
Chemat, F., Rombaut, N., Sicaire, A.-G., Meullemiestre, A., Fabiano-Tixier, A.-S., & Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics sonochemistry, 34, 540-560.
Chen, F., Liu, S., Zhao, Z., Gao, W., Ma, Y., Wang, X., . . . Luo, D. (2020). Ultrasound pre-treatment combined with microwave-assisted hydrodistillation of essential oils from Perilla frutescens (L.) Britt. leaves and its chemical composition and biological activity. Industrial Crops and Products, 143, 111908.
Chiappetta, D. A., & Sosnik, A. (2007). Poly (ethylene oxide)–poly (propylene oxide) block copolymer micelles as drug delivery agents: improved hydrosolubility, stability and bioavailability of drugs. European Journal of Pharmaceutics and Biopharmaceutics, 66(3), 303-317.
Cui, H., Pan, H.-W., Wang, P.-H., Yang, X.-D., Zhai, W.-C., Dong, Y., & Zhou, H.-L. (2018). Essential oils from Carex meyeriana Kunth: Optimization of hydrodistillation extraction by response surface methodology and evaluation of its antioxidant and antimicrobial activities. Industrial Crops and Products, 124, 669-676.
Da Silva, R. P., Rocha-Santos, T. A., & Duarte, A. C. (2016). Supercritical fluid extraction of bioactive compounds. TrAC Trends in Analytical Chemistry, 76, 40-51.
Desai, M. A., Parikh, J., & De, A. K. (2014). Modelling and optimization studies on extraction of lemongrass oil from Cymbopogon flexuosus (Steud.) Wats. Chemical Engineering Research and Design, 92(5), 793-803.
Destandau, E., Michel, T., & Elfakir, C. (2013). Microwave-assisted extraction. Natural product extraction: principles and applications(21), 113.
Espina, L., Gelaw, T. K., de Lamo-Castellví, S., Pagán, R., & García-Gonzalo, D. (2013). Mechanism of bacterial inactivation by (+)-limonene and its potential use in food preservation combined processes. PloS one, 8(2), e56769.
Espina, L., Somolinos, M., Lorán, S., Conchello, P., García, D., & Pagán, R. (2011). Chemical composition of commercial citrus fruit essential oils and evaluation of their antimicrobial activity acting alone or in combined processes. Food control, 22(6), 896-902.
Fahn, A. (1988). Secretory tissues in vascular plants. New phytologist, 108(3), 229-257.
Ferhat, M., Boukhatem, M., Hazzit, M., Meklati, B., & Chemat, F. (2016). Cold pressing, hydrodistillation and microwave dry distillation of citrus essential oil from Algeria: A comparative study. Electronic Journal of Biology S, 1.
Ferhat, M. A., Meklati, B. Y., & Chemat, F. (2007). Comparison of different isolation methods of essential oil from Citrus fruits: cold pressing, hydrodistillation and microwave ‘dry’distillation. Flavour and Fragrance Journal, 22(6), 494-504.
Filly, A., Fabiano-Tixier, A.-S., Lemasson, Y., Roy, C., Fernandez, X., & Chemat, F. (2014). Extraction of aroma compounds in blackcurrant buds by alternative solvents: Theoretical and experimental solubility study. Comptes Rendus Chimie, 17(12), 1268-1275.
Halliwell, B., Murcia, M. A., Chirico, S., & Aruoma, O. I. (1995). Free radicals and antioxidants in food and in vivo: what they do and how they work. Critical Reviews in Food Science & Nutrition, 35(1-2), 7-20.
Himed, L., Merniz, S., Monteagudo-Olivan, R., Barkat, M., & Coronas, J. (2019). Antioxidant activity of the essential oil of citrus limon before and after its encapsulation in amorphous SiO2. Scientific African, 6, e00181.
Hurlbert, S. H. (1984). Pseudoreplication and the design of ecological field experiments. Ecological monographs, 54(2), 187-211.
Inc., N. D. A. (2017). Untapping the power of nature: essential oil extraction methods. Retrieved from https://www.newdirectionsaromatics.com/blog/articles/how-essential-oils-are-made.html#production-of-essential-oils
Jimbo, D., Kimura, Y., Taniguchi, M., Inoue, M., & Urakami, K. (2009). Effect of aromatherapy on patients with Alzheimer's disease. Psychogeriatrics, 9(4), 173-179.
Kaur, C., & Kapoor, H. C. (2001). Antioxidants in fruits and vegetables–the millennium’s health. International journal of food science & technology, 36(7), 703-725.
Kim, M. J., Hwang, J. H., Ko, H. J., Na, H. B., & Kim, J. H. (2015). Lemon detox diet reduced body fat, insulin resistance, and serum hs-CRP level without hematological changes in overweight Korean women. Nutrition research, 35(5), 409-420.
Klimek-Szczykutowicz, M., Szopa, A., & Ekiert, H. (2020). Citrus limon (Lemon) phenomenon—a review of the chemistry, pharmacological properties, applications in the modern pharmaceutical, food, and cosmetics industries, and biotechnological studies. Plants, 9(1), 119.
Komives, C. F., Lilley, E., & Russell, A. J. (1994). Biodegradation of pesticides in nonionic water‐in‐oil microemulsions of tween 85: Relationship between micelle structure and activity. Biotechnology and bioengineering, 43(10), 946-959.
Komiya, M., Takeuchi, T., & Harada, E. (2006). Lemon oil vapor causes an anti-stress effect via modulating the 5-HT and DA activities in mice. Behavioural brain research, 172(2), 240-249.
Kusuma, H. S., & Mahfud, M. (2017). Microwave hydrodistillation for extraction of essential oil from Pogostemon cablin Benth: analysis and modelling of extraction kinetics. Journal of Applied Research on Medicinal and Aromatic Plants, 4, 46-54.
Langevin, D. (2020). Emulsions, Microemulsions and Foams: Springer.
Lee, K. S., & Lee, J. H. (2019). Hybrid enhanced oil recovery using smart waterflooding: Gulf Professional Publishing.
Leelaphiwat, P., Auras, R. A., Burgess, G. J., Harte, J. B., & Chonhenchob, V. (2018). Preliminary quantification of the permeability, solubility and diffusion coefficients of major aroma compounds present in herbs through various plastic packaging materials. Journal of the Science of Food and Agriculture, 98(4), 1545-1553.
Li, J.-L., & Chen, B.-H. (2002). Solubilization of model polycyclic aromatic hydrocarbons by nonionic surfactants. Chemical Engineering Science, 57(14), 2825-2835.
Lianfu, Z., & Zelong, L. (2008). Optimization and comparison of ultrasound/microwave assisted extraction (UMAE) and ultrasonic assisted extraction (UAE) of lycopene from tomatoes. Ultrasonics sonochemistry, 15(5), 731-737.
Lins, R. F., Lustri, W. R., Minharro, S., Alonso, A., & de Sousa Neto, D. (2016). On the formation, physicochemical properties and antibacterial activity of colloidal systems containing tea tree (Melaleuca alternifolia) oil. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 497, 271-279.
Mahato, N., Sharma, K., Koteswararao, R., Sinha, M., Baral, E., & Cho, M. H. (2019). Citrus essential oils: Extraction, authentication and application in food preservation. Critical reviews in food science and nutrition, 59(4), 611-625.
Mahato, N., Sinha, M., Sharma, K., Koteswararao, R., & Cho, M. H. (2019). Modern extraction and purification techniques for obtaining high purity food-grade bioactive compounds and value-added co-products from citrus wastes. Foods, 8(11), 523.
Martínez-Abad, A., Ramos, M., Hamzaoui, M., Kohnen, S., Jiménez, A., & Garrigós, M. C. (2020). Optimisation of Sequential Microwave-Assisted Extraction of Essential Oil and Pigment from Lemon Peels Waste. Foods, 9(10), 1493.
McClements, D. J. (2012). Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft matter, 8(6), 1719-1729.
Meziane, I. A. A., Bali, N., Belblidia, N.-B., Abatzoglou, N., & Benyoussef, E.-H. (2019). The first-order model in the simulation of essential oil extraction kinetics. Journal of Applied Research on Medicinal and Aromatic Plants, 15, 100226.
Millet, F. (2014). Huiles essentielles et essence de citronnier (Citrus limon (L.) Burm. f.). Phytothérapie, 12(2), 89-97.
Montgomery, D. C. (2017). Design and analysis of experiments: John wiley & sons.
Moufida, S. d., & Marzouk, B. (2003). Biochemical characterization of blood orange, sweet orange, lemon, bergamot and bitter orange. Phytochemistry, 62(8), 1283-1289.
Moure, A., Cruz, J. M., Franco, D., Domı́nguez, J. M., Sineiro, J., Domı́nguez, H., . . . Parajó, J. C. (2001). Natural antioxidants from residual sources. Food chemistry, 72(2), 145-171.
Murali, R., & Saravanan, R. (2012). Antidiabetic effect of d-limonene, a monoterpene in streptozotocin-induced diabetic rats. Biomedicine & Preventive Nutrition, 2(4), 269-275.
Myers, D. (2020). Surfactant science and technology: John Wiley & Sons.
Orafidiya, L. O., & Oladimeji, F. (2002). Determination of the required HLB values of some essential oils. International Journal of Pharmaceutics, 237(1-2), 241-249.
Organization, U. N. I. D., Handa, S. S., Khanuja, S. P. S., Longo, G., & Rakesh, D. D. (2008). Extraction technologies for medicinal and aromatic plants: Earth, Environmental and Marine Sciences and Technologies.
Pandey, K. B., & Rizvi, S. I. (2009). Plant polyphenols as dietary antioxidants in human health and disease. Oxidative medicine and cellular longevity, 2(5), 270-278.
Pateiro, M., Barba, F. J., Domínguez, R., Sant'Ana, A. S., Khaneghah, A. M., Gavahian, M., . . . Lorenzo, J. M. (2018). Essential oils as natural additives to prevent oxidation reactions in meat and meat products: A review. Food Research International, 113, 156-166.
Peterson, J. J., Dwyer, J. T., Beecher, G. R., Bhagwat, S. A., Gebhardt, S. E., Haytowitz, D. B., & Holden, J. M. (2006). Flavanones in oranges, tangerines (mandarins), tangors, and tangelos: a compilation and review of the data from the analytical literature. Journal of Food Composition and Analysis, 19, S66-S73.
Rao, J., & McClements, D. J. (2012). Impact of lemon oil composition on formation and stability of model food and beverage emulsions. Food chemistry, 134(2), 749-757.
Rodriguez-Tudela, J., Barchiesi, F., Bille, J., Chryssanthou, E., Cuenca-Estrella, M., Denning, D., . . . Moore, C. (2003). Method for the determination of minimum inhibitory concentration (MIC) by broth dilution of fermentative yeasts. Clinical Microbiology and Infection, 9(8), i-viii.
Rosen, M. J., & Kunjappu, J. T. (2012). Surfactants and interfacial phenomena: John Wiley & Sons.
Ruangpan, L., & Tendencia, E. A. (2004). Laboratory manual of standardized methods for antimicrobial sensitivity tests for bacteria isolated from aquatic animals and environment: Aquaculture Department, Southeast Asian Fisheries Development Center.
Ruberto, G., & Baratta, M. T. (2000). Antioxidant activity of selected essential oil components in two lipid model systems. Food chemistry, 69(2), 167-174.
Ruiz, B., & Flotats, X. (2014). Citrus essential oils and their influence on the anaerobic digestion process: an overview. Waste management, 34(11), 2063-2079.
Sanchez-Dominguez, M., Aubery, C., & Solans, C. (2012). New trends on the synthesis of inorganic nanoparticles using microemulsions as confined reaction media. Smart Nanoparticles Technology, 195-220.
Satari, B., & Karimi, K. (2018). Citrus processing wastes: Environmental impacts, recent advances, and future perspectives in total valorization. Resources, Conservation and Recycling, 129, 153-167.
Scarano, P., Naviglio, D., Prigioniero, A., Tartaglia, M., Postiglione, A., Sciarrillo, R., & Guarino, C. (2020). Sustainability: Obtaining natural dyes from waste matrices using the prickly pear peels of Opuntia ficus-indica (L.) Miller. Agronomy, 10(4), 528.
Schönherr, J. (2006). Characterization of aqueous pores in plant cuticles and permeation of ionic solutes. Journal of Experimental Botany, 57(11), 2471-2491.
Schreiber, L. (2005). Polar paths of diffusion across plant cuticles: new evidence for an old hypothesis. Annals of Botany, 95(7), 1069-1073.
Sharma, O. P., & Bhat, T. K. (2009). DPPH antioxidant assay revisited. Food chemistry, 113(4), 1202-1205.
Shinoda, K., & Arai, H. (1964). The correlation between phase inversion temperature in emulsion and cloud point in solution of nonionic emulsifier. The Journal of Physical Chemistry, 68(12), 3485-3490.
Silva, J., Abebe, W., Sousa, S., Duarte, V., Machado, M., & Matos, F. (2003). Analgesic and anti-inflammatory effects of essential oils of Eucalyptus. Journal of ethnopharmacology, 89(2-3), 277-283.
Soković, M., Glamočlija, J., Marin, P. D., Brkić, D., & Van Griensven, L. J. (2010). Antibacterial effects of the essential oils of commonly consumed medicinal herbs using an in vitro model. Molecules, 15(11), 7532-7546.
Tadros, T. F. (2006). Applied surfactants: principles and applications: John Wiley & Sons.
Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L., & Byrne, D. H. (2006). Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis, 19(6-7), 669-675.
Tiab, D., & Donaldson, E. C. (2015). Petrophysics: theory and practice of measuring reservoir rock and fluid transport properties: Gulf professional publishing.
Tiwari, B. K. (2015). Ultrasound: A clean, green extraction technology. TrAC Trends in Analytical Chemistry, 71, 100-109.
Tongnuanchan, P., & Benjakul, S. (2014). Essential oils: extraction, bioactivities, and their uses for food preservation. Journal of food science, 79(7), R1231-R1249.
Turek, C., & Stintzing, F. C. (2013). Stability of essential oils: a review. Comprehensive reviews in food science and food safety, 12(1), 40-53.
Verma, D. K., & Goyal, M. R. (2017). Engineering Interventions in Foods and Plants: CRC Press.
Voo, S. S., Grimes, H. D., & Lange, B. M. (2012). Assessing the biosynthetic capabilities of secretory glands in Citrus peel. Plant Physiology, 159(1), 81-94.
Wan, L. S., & Lee, P. F. (1974). CMC of polysorbates. Journal of pharmaceutical sciences, 63(1), 136-137.
Wasserstein, R. L., & Lazar, N. A. (2016). The ASA statement on p-values: context, process, and purpose. In: Taylor & Francis.
Witek-Krowiak, A., Chojnacka, K., Podstawczyk, D., Dawiec, A., & Pokomeda, K. (2014). Application of response surface methodology and artificial neural network methods in modelling and optimization of biosorption process. Bioresource technology, 160, 150-160.
Xavier-Junior, F. H., Huang, N., Vachon, J.-J., Rehder, V. L. G., do Egito, E. S. T., & Vauthier, C. (2016). Match of solubility parameters between oil and surfactants as a rational approach for the formulation of microemulsion with a high dispersed volume of copaiba oil and low surfactant content. Pharmaceutical research, 33(12), 3031-3043.
Zhang, Q.-W., Lin, L.-G., & Ye, W.-C. (2018). Techniques for extraction and isolation of natural products: A comprehensive review. Chinese medicine, 13(1), 1-26.
Ziani, K., Fang, Y., & McClements, D. J. (2012). Encapsulation of functional lipophilic components in surfactant-based colloidal delivery systems: Vitamin E, vitamin D, and lemon oil. Food chemistry, 134(2), 1106-1112.
Zorga, J., Kunicka-Styczyńska, A., Gruska, R., & Śmigielski, K. (2020). Ultrasound-Assisted Hydrodistillation of Essential Oil from Celery Seeds (Apium graveolens L.) and Its Biological and Aroma Profiles. Molecules, 25(22), 5322.
校內:2026-08-03公開