簡易檢索 / 詳目顯示

研究生: 連育成
Lien, Yu-Cheng
論文名稱: 以聯結函數補遺日懸浮載輸砂量
Infilling daily suspended sediment load using copula
指導教授: 蕭政宗
Shiau, Jenq-Tzong
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 60
中文關鍵詞: 聯結函數條件機率日懸浮載輸砂量輸砂量率定曲線
外文關鍵詞: copula, conditional probability, daily suspended sediment loads, sediment rating curve
相關次數: 點閱:320下載:31
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 水文資料是水利工程規劃及設計的重要參考依據,尤其是長期且完整無缺失的資料。台灣多數河川有完整日流量觀測值,而輸砂量觀測值個數僅佔一年總天數的2%~8%,傳統使用輸砂量率定曲線以流量推估輸砂量,推估之輸砂量與觀測流量為固定關係,無法描述觀測流量及輸砂量間的散佈特性。因此本文以聯結函數建立日流量及日懸浮載輸砂量之雙變數機率模式,使用條件於特定觀測流量之輸砂量機率分布進行機率式推估,並以四種單一值輸砂量推估方法及率定曲線推估單一輸砂量值,使用五種誤差指標分別為RMSE(均方根誤差)、MAPE(平均絕對值百分比誤差)、NSE(Nash-Sutcliffe效率)、MNSE(修正Nash-Sutcliffe效率)及KGE(Kling-Gupta效率)評估不同方法之輸砂量推估值與輸砂量觀測值間的差異。本研究以花蓮溪仁壽橋測站1960–2019年的觀測資料為例說明,結果顯示方法3(以條件輸砂量機率密度函數之眾數為推估值)在MAPE及MNSE誤差指標表現最佳,而率定曲線在RMSE及NSE有最佳誤差指標,方法4(條件輸砂量機率密度函數配合蒙地卡羅法)在KGE有最佳值。若以機率分布型態來評估,方法1至4均能產生低輸砂量高發生頻率、高輸砂量低發生頻率,類似於實際觀測輸砂量的特性,而率定曲線推估值無法有此特性。本研究建議於補遺輸砂量的方法各有優缺點,無任一方法在所有評估指標均有最佳表現,未來宜增加不同變數以增加模式補遺資料的準確性。

    Hydrological data, especially long and complete data is an important factor for water resources engineering planning and design. Most rivers in Taiwan have complete daily streamflow discharge, but the number of suspended sediment load observations only account for 2% to 8% of the total streamflow observations. Traditionally, suspended sediment load rating curves are used to estimate suspended sediment load by observed discharge. The relationship between suspended sediment load and the observed streamflow discharge of the rating curve is fixed, and it cannot describe scattered characteristics between the observed streamflow discharge and the suspended sediment load. Therefore, this study establishes a bivariate probability model of daily streamflow discharge and daily suspended sediment load using copula to infill sediment in probabilistic manners. In addition, four single-value estimations to impute suspended sediment load are also used in this study for practical applications. The obtained outcomes of these methods associated with the results of the traditional sediment rating curve are compared with recorded data and evaluated in terms of root mean square error (RMSE), mean absolute percentage error (MAPE), Nash-Sutcliffe efficiency (NSE), modified Nash-Sutcliffe efficiency (MNSE), and Kling-Gupta efficiency (KGE). The proposed approach is applied to Janshou station located in eastern Taiwan with recorded daily data for the period of 1960–2019. The results indicate that the infilled sediments by the sediment rating curve exhibit better performance in RMSE and NSE, while the copula-based methods outperform in MAPE and MNSE.

    摘要 I Extended Abstract II 誌謝 XIII 目錄 XIV 表目錄 XVI 圖目錄 XVII 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 3 1.3 相關文獻回顧 3 1.4 論文架構 7 第二章 研究方法 8 2.1 聯結函數(copula) 8 2.1.1 聯合分布函數 8 2.1.2 參數推估-IFM 9 2.1.3 適合度檢定 10 2.1.4 選擇最佳分布-AIC 11 2.2 條件機率分布 12 2.3 推估輸砂量的方法 13 2.3.1 方法1 15 2.3.2 方法2 16 2.3.3 方法3 17 2.3.4 方法4 18 2.4 懸浮載輸砂量率定曲線 19 第三章 研究地區與資料 21 3.1 流量及輸砂量資料 21 3.2 模式率定與驗證資料 21 第四章 結果與討論 24 4.1 輸砂量率定曲線推估結果 24 4.2 流量及輸砂量最佳邊際分布與最佳聯結函數 27 4.3 以條件機率分布函數推估輸砂量 35 4.4 單一輸砂量推估值之比較 38 4.5 討論 41 4.5.1 不同流量範圍輸砂量推估值與觀測值比較 41 4.5.2 相同或相近流量範圍之輸砂量推估值與觀測值比較 46 4.5.3 觀測與推估輸砂量頻率組體圖比較 50 第五章 結論與建議 52 5.1 結論 52 5.2 建議 53 參考文獻 54

    1. Akaike, H., A new look at the statistical model identification, IEEE Transactions on Automatic Control, 19(6), 716-723, 1974.
    2. Al-Mukhtar, M., Random forest, support vector machine, and neural networks to modelling suspended sediment in Tigris River-Baghdad, Environmental Monitoring and Assessment, 191(11), 673, 2019.
    3. Anderson, T. W., On the distribution of the two-sample Cramer-von Mises Criterion, The Annals of Mathematical Statistics, 33(3), 1148-1159, 1962.
    4. Ben Aissia, M.-A., Chebana, F., and Ouarda, T. B. M. J., Multivariate missing data in hydrology – Review and applications, Advances in Water Resources, 110, 299-309, 2017.
    5. Bezak, N., Rusjan, S., Kramar Fijavž, M., Mikoš, M., and Šraj, M., Estimation of suspended sediment loads using copula functions, Water, 9(8), 2017.
    6. Bárdossy, A., and Pegram, G., Infilling missing precipitation records – A comparison of a new copula-based method with other techniques, Journal of Hydrology, 519, 1162-1170, 2014.
    7. Bozdogan, H., Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions, Psychometrika, 52(3), 345-370, 1987.
    8. Burnham, K. P., Anderson, D. R., and Huyvaert, K., AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons, Behavioral Ecology and Sociobiology, 65, 23-35, 2011.
    9. Chen, L., Qiu, H., Zhang, J., Singh, V. P., Zhou, J., and Huang, K., Copula-based method for stochastic daily streamflow simulation considering lag-2 autocorrelation, Journal of Hydrology, 578, 123938, 2019.
    10. Cigizoglu, H. K., and Alp, M., Rainfall-runoff modelling using three neural network methods. Paper presented at the Artificial Intelligence and Soft Computing - ICAISC 2004, Berlin, Heidelberg, 166-171, 2004.
    11. Çimen, M., Estimation of daily suspended sediments using support vector machines, Hydrological Sciences Journal, 53(3), 656-666, 2008.
    12. Dadson, S. J., Hovius, N., Chen, H. G., Dade, W. B., Hsieh, M. L., Willett, S. D., Hu, J. C., Horng, M. J., Chen, M. C., Stark, C. P., Lague, D., and Lin, J. C., Links between erosion, runoff variability and seismicity in the Taiwan orogen, Nature, 426(6967), 648-651, 2003.
    13. Di Lascio, F. M. L., Giannerini, S., and Reale, A., Exploring copulas for the imputation of complex dependent data, Statistical Methods & Applications, 24(1), 159-175, 2015.
    14. Ding, W., and Song, P. X. K., EM algorithm in Gaussian copula with missing data, Computational Statistics & Data Analysis, 101, 1-11, 2016.
    15. Dodangeh, E., Shahedi, K., Shiau, J.-T., and MirAkbari, M., Spatial hydrological drought characteristics in Karkheh River basin, southwest Iran using copulas, Journal of Earth System Science, 126(6), 80, 2017.
    16. Favre, A.-C., El Adlouni, S., Perreault, L., Thiémonge, N., and Bobée, B., Multivariate hydrological frequency analysis using copulas, Water Resources Research, 40(1), 2004.
    17. Ferguson, R. I., River loads underestimated by rating curves, Water Resources Research, 22(1), 74-76, 1986.
    18. Fu, G., and Butler, D., Copula-based frequency analysis of overflow and flooding in urban drainage systems, Journal of Hydrology, 510, 49-58, 2014.
    19. Genest, C., and Favre, A.-C., Everything you always wanted to know about copula modeling but were afraid to ask, Journal of Hydrologic Engineering, 12(4), 347-368, 2007.
    20. Genest, C., and Rémillard, B., Validity of the parametric bootstrap for goodness-of-fit testing in semiparametric models, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, 44(6), 1096-1127, 2008.
    21. Genest, C., Rémillard, B., and Beaudoin, D., Goodness-of-fit tests for copulas: A review and a power study, Insurance: Mathematics and Economics, 44(2), 199-213, 2009.
    22. Guo, A., Chang, J., Wang, Y., Huang, Q., and Zhou, S., Flood risk analysis for flood control and sediment transportation in sandy regions: A case study in the Loess Plateau, China, Journal of Hydrology, 560, 39-55, 2018.
    23. Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F., Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling, Journal of Hydrology, 377(1), 80-91, 2009.
    24. Hamzah, F. B., Mohd Hamzah, F., Mohd Razali, S. F., Jaafar, O., and Abdul Jamil, N., Imputation methods for recovering streamflow observation: A methodological review, Cogent Environmental Science, 6(1), 1745133, 2020.
    25. Huang, S., Li, P., Huang, Q., and Leng, G., Copula-based identification of the non-stationarity of the relation between runoff and sediment load, International Journal of Sediment Research, 32(2), 221-230, 2017.
    26. Idrees, M. B., Jehanzaib, M., Kim, D., and Kim, T.-W., Comprehensive evaluation of machine learning models for suspended sediment load inflow prediction in a reservoir, Stochastic Environmental Research and Risk Assessment, 2021.
    27. Jain Sharad, K., Development of integrated sediment rating curves using ANNs, Journal of Hydraulic Engineering, 127(1), 30-37, 2001.
    28. Kisi, O., Suspended sediment estimation using neuro-fuzzy and neural network approaches, Hydrological Sciences Journal, 50(4), 683-696, 2005.
    29. Kisi, O., Karahan, M. E., and Şen, Z., River suspended sediment modelling using a fuzzy logic approach, Hydrological Processes, 20(20), 4351-4362, 2006.
    30. Kitsikoudis, V., Sidiropoulos, E., and Hrissanthou, V., Machine learning utilization for bed load transport in gravel-bed rivers, Water Resources Management, 28(11), 3727-3743, 2014.
    31. Käärik, E., and Käärik, M., Modeling dropouts by conditional distribution, a copula-based approach, Journal of Statistical Planning and Inference, 139, 3830-3835, 2009.
    32. Kullback, S., and Leibler, R. A., On Information and Sufficiency, The Annals of Mathematical Statistics, 22(1), 79-86, 78, 1951.
    33. Latif, S., and Mustafa, F., Bivariate joint distribution analysis of the flood characteristics under semiparametric copula distribution framework for the Kelantan River basin in Malaysia, Journal of Ocean Engineering and Science, 6(2), 128-145, 2021.
    34. Legates, D., and McCabe, G., Evaluating the use of goodnes of fit measures in hydrologic and hydroclimatic model validation, Water Resources Research, 35, 233-241, 1999.
    35. Mutua, F. M., The use of the Akaike Information Criterion in the identification of an optimum flood frequency model, Hydrological Sciences Journal, 39(3), 235-244, 1994.
    36. Nash, J. E., and Sutcliffe, J. V., River flow forecasting through conceptual models part I — A discussion of principles, Journal of Hydrology, 10(3), 282-290, 1970.
    37. Park, D., Markus, M., Jung, K., and Um, M.-J., Uncertainty analysis of the relationship between discharge and nitrate concentration in the Lower Illinois River using a copula model, Journal of Cleaner Production, 222, 310-323, 2019.
    38. Parker, R. S., and Troutman, B. M., Frequency distribution for suspended sediment loads, Water Resources Research, 25(7), 1567-1574, 1989.
    39. Peng, Y., Shi, Y., Yan, H., and Zhang, J., Multivariate Frequency Analysis of Annual Maxima Suspended Sediment Concentrations and Floods in the Jinsha River, China, Journal of Hydrologic Engineering, 25(9), 05020029, 2020a.
    40. Peng, Y., Yu, X., Yan, H., and Zhang, J., Stochastic Simulation of Daily Suspended Sediment Concentration Using Multivariate Copulas, Water Resources Management, 34(12), 3913-3932, 2020b.
    41. Rustomji, P., and Wilkinson, S. N., Applying bootstrap resampling to quantify uncertainty in fluvial suspended sediment loads estimated using rating curves, Water Resources Research, 44(9), 2008.
    42. Sahoo, D. P., Sahoo, B., and Tiwari, M. K., Copula-based probabilistic spectral algorithms for high-frequent streamflow estimation, Remote Sensing of Environment, 251, 112092, 2020.
    43. Salvadori, G., and De Michele, C., Frequency analysis via copulas: theoretical aspects and applications to hydrological events, Water Resources Research, 40(12), 2004.
    44. Salvadori, G., and De Michele, C., On the use of copulas in hydrology: theory and practice, Journal of Hydrologic Engineering, 12(4), 369-380, 2007.
    45. Shiau, J.-T., Fitting drought duration and severity with two-dimensional copulas, Water Resources Management, 20(5), 795-815, 2006.
    46. Shiau, J.-T., and Chen, T.-J., Quantile regression-based probabilistic estimation scheme for daily and annual suspended sediment loads, Water Resources Management, 29(8), 2805-2818, 2015.
    47. Shiau, J.-T., Wang, H.-Y., and Tsai, C.-T., Bivarite frequency analysis of floods usind copula, JAWRA Journal of the American Water Resources Association, 42(6), 1549-1564, 2006.
    48. Shojaeezadeh, S. A., Nikoo, M. R., McNamara, J. P., AghaKouchak, A., and Sadegh, M., Stochastic modeling of suspended sediment load in alluvial rivers, Advances in Water Resources, 119, 188-196, 2018.
    49. Shojaeezadeh, S. A., Nikoo, M. R., Mirchi, A., Mallakpour, I., AghaKouchak, A., and Sadegh, M., Probabilistic hazard assessment of contaminated sediment in rivers, Science of The Total Environment, 703, 134875, 2020.
    50. Sklar, A. Fonctions de répartition à n dimensions et leurs marges (Vol. 8): l’Institut de Statistique de L’Université de Paris., 1959.
    51. Yadav, A., Chatterjee, S., and Equeenuddin, S. M., Suspended sediment yield modeling in Mahanadi River, India by multi-objective optimization hybridizing artificial intelligence algorithms, International Journal of Sediment Research, 36(1), 76-91, 2021.
    52. 陳憲宗、莊永忠、謝敏政,泥砂率定曲線之偏差修正及集水區地表沖蝕率推估,臺灣水利,頁23-33,2015。
    53. 宋健豪,蘭陽溪上游流域逕流量與輸砂量之趨勢分析,工程環境會刊,頁16-31,2017。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE