簡易檢索 / 詳目顯示

研究生: 許藝耀
Hsu, Yi-Yio
論文名稱: 橡膠隔振器之黏彈性分析與幾何最佳化設計
Viscoelastic Analysis and Geometry Optimization for Rubber Mounts
指導教授: 劉至行
Liu, Chih-Hsing
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 73
中文關鍵詞: 引擎腳尺寸最佳化布穀鳥演算法靜態剛性逆向有限元素法
外文關鍵詞: Engine mount, size optimization, cuckoo algorithm, static stiffness, inverse finite element method
相關次數: 點閱:60下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於橡膠隔振器具有良好的可塑性且製造方便,並具有隔振功能,已存在一段很長的歷史。而其中引擎腳的應用不管是在汽車、輪船還是飛機上,皆已被廠商廣泛運用在自家產品上,以增加產品結構的隔振效果。然而純彈性之引擎腳在研究上的發展,卻不如液壓引擎腳及主動式之引擎腳般發達。因此本研究設計了一套純彈性引擎腳的幾何最佳化方法,以達到廠商對引擎腳靜態剛性值的設計要求。其中本研究利用有限元素分析軟體ANSYS,對引擎腳的靜態剛性進行模擬分析。在幾何最佳化的方法上,本研究導入了布穀鳥演算法,使得目標函數更容易收斂。且因啟發式演算法的特性,使得解不會被侷限於區域解之內。本研究的成果將可以提供國內之橡膠廠商,一套完整的引擎腳設計流程。藉由針對不同的橡膠材料進行拉伸及鬆弛試驗,並進行實驗數據的擬合及逆向有限元素法的使用,可以得到適用於個別實驗材料之有限元數模型。藉此進行引擎腳剛性值的分析,使得引擎腳的設計不再需要利用試誤法。藉由分析材料性質,決定目標剛性值以及設定邊界條件進行模擬,則得以完成一個符合廠商規格之引擎腳設計。

    The applications of engine mounts, whether in car, ship or aircraft, have been widely used by the manufacturers on their own products to increase the vibration isolation effect of the product structure. This study aims to develope a geometry optimization method for elastomeric mounts to meet the static stiffness values in two different loading directions. In this study, the finite element analysis software ANSYS is used to simulate the static stiffness of the engine mounts. In the method of geometry optimization, this study introduces the cuckoo algorithm, which makes the objective function easier to converge. The numerical parameters for rubber model is obtained from tensile and relaxation tests by fitting experimental data and using inverse finite element method.

    摘要 I ABSTRACT II 誌謝 X 目錄 XI 圖目錄 XIV 表目錄 XVII 符號表 XVIII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 引擎腳分類之文獻回顧 2 1.2.2 幾何最佳化文獻回顧 5 1.3 研究動機與目標 7 1.4 論文架構 8 第二章 基礎理論 10 2.1 前言 10 2.2 超彈性體橡膠材料模型 10 2.2.1 Mooney-Rivlin模型 11 2.2.2 Yeoh模型 11 2.2.3 Ogden模型 12 2.3 線性黏彈性橡膠材料模型 12 2.3.1 Maxwell模型 13 2.3.2 Kelvin-Voigt模型 15 2.3.3 Generalized Maxwell模型 16 2.3.4 Generalized Kelvin模型 17 2.4 諧波負載下黏彈性材料的響應 18 2.5 最佳化設計理論:布穀鳥演算法 20 2.6 本章小結 23 第三章 實驗與數據分析 24 3.1 前言 24 3.2 橡膠材料性質實驗 25 3.2.1 橡膠拉伸實驗 25 3.2.2 橡膠鬆弛實驗 29 3.3 引擎腳剛性實驗 30 3.3.1 靜態剛性實驗 31 3.3.2 動態剛性實驗 34 3.4 數據分析 36 3.4.1 實驗曲線擬合 36 3.4.2 逆向有限元素法 39 3.5 本章小結 46 第四章 有限元素分析與幾何最佳化設計 47 4.1 前言 47 4.2 有限元素分析模型建立 47 4.2.1 逆向有限元素法模型 48 4.2.2 引擎腳之剛性驗證模型 51 4.2.3 引擎腳之幾何最佳化模型 56 4.3 引擎腳幾何最佳化之結果 61 4.4 本章小結 68 第五章 結論與建議 69 5.1 結論 69 5.2 建議 70 參考文獻 71

    [1] 中華民國行政院交通部, http://www.motc.gov.tw.
    [2] Y. Yu, N.G. Naganathan, and R.V. Dukkipati, A literature review of automotive vehicle engine mounting systems. Mechanism and Machine Theory, 2001. 36(1): p. 123-142.
    [3] H.C. Lord, Vibration-dampening mounting. Google Patents, 1930.
    [4] R.H. Marjoram, Pressurized hydraulic mounts for improved isolation of vehicle cabs. SAE Technical Paper, 1985.
    [5] M. Bernuchon, A new generation of engine mounts. SAE Transactions, 1984: p. 230-236.
    [6] P.E. Corcoran and G.-H. Ticks, Hydraulic engine mount characteristics. SAE Transactions, 1984: p. 25-30.
    [7] K. Kadomatsu, Hydraulic engine mount for shock isolation at acceleration on the FWD cars. SAE Technical Paper, 1989.
    [8] 魏守賢, 液壓引擎腳之開發與實測. 中華大學機械與航太工程研究所碩士論文, 2006.
    [9] L. Miller and M. Ahmadian, Active mounts-a discussion of future technological trends. INTER-NOISE and NOISE-CON Congress and Conference Proceedings, 1992. 1992(1): p. 421-426.
    [10] Y. Hagino, Y. Furuishi, Y. Makigawa, N. Kumagai, and M. Yoshikawa, Active control for body vibration of FWD car. SAE Technical Paper, 1986.
    [11] M. Muller, U. Weltin, D. Law, M.M. Roberts, and T.W. Siebler, The effect of engine mounts on the noise and vibration behavior of vehicles. SAE Technical Paper, 1994.
    [12] G.N. Vanderplaats, Numerical optimization techniques for engineering design. Vanderplaats Research and Development, Incorporated, 2001.
    [13] J.J. Kim and H.Y. Kim, Shape design of an engine mount by a method of parameter optimization. Computers & Structures, 1997. 65(5): p. 725-731.
    [14] N.K. Lee, M.S. Lee, H.Y. Kim, and J.J. Kim, Design of engine mount using finite element method and optimization technique. 1998, SAE Technical Paper.
    [15] H.-Y. Oh and K.-J. Kim, Design of Shape for Visco-Elastic Vibration Isolation Element by Topological and Shape Optimization Methods. 2009, SAE Technical Paper.
    [16] C.-H. Park, H.-J. Shim, D.-H. Choi, J.-K. Kim, and S.-M. Lee, Shape optimization of rubber isolators in automotive cooling modules for the maximization of vibration isolation and fatigue life. International Journal of Automotive Technology, 2012. 13(1): p. 61.
    [17] N. Kaya, Shape optimization of rubber bushing using differential evolution algorithm. The Scientific World Journal, 2014. 2014.
    [18] M. Mooney, A theory of large elastic deformation. Journal of Applied Physics, 1940. 11(9): p. 582-592.
    [19] O. Yeoh, Some forms of the strain energy function for rubber. Rubber Chemistry and Technology, 1993. 66(5): p. 754-771.
    [20] R.W. Ogden, Large deformation isotropic elasticity–on the correlation of theory and experiment for incompressible rubberlike solids. Proc. R. Soc. Lond. A, 1972. 326(1567): p. 565-584.
    [21] ANSYS, Inc., ANSYS Help System, version. 17.0.0, 2016.
    [22] W.N. Findley and F.A. Davis, Creep and relaxation of nonlinear viscoelastic materials. Courier Corporation, 2013.
    [23] P.L. Geiß and M. Schumann, Creep load conditions. Handbook of Adhesion Technology, 2017: p. 1-33.
    [24] X.-S. Yang and S. Deb, Cuckoo search via Lévy flights. Nature & Biologically Inspired Computing, 2009. NaBIC 2009. World Congress on, 2009: p. 210-214.
    [25] X.-S. Yang, Nature-inspired metaheuristic algorithms. Luniver press, 2010.
    [26] X.-S. Yang and S. Deb, Multiobjective cuckoo search for design optimization. Computers & Operations Research, 2013. 40(6): p. 1616-1624.
    [27] JIS K 6251加硫橡膠和熱塑性橡膠―拉伸特性的取得方法(加硫ゴム及び熱可塑性ゴム―引張特性の求め方). 日本規格協会, 2004.
    [28] JIS K 6263加硫橡膠和熱塑性橡膠―應力鬆弛的取得方法(加硫ゴム及び熱可塑性ゴム―応力緩和の求め方). 日本規格協会, 2004.
    [29] K.P. Menard, Dynamic mechanical analysis: a practical introduction. CRC Press, 2008.
    [30] G. Berselli, R. Vertechy, M. Pellicciari, and G. Vassura, Hyperelastic modeling of rubber-like photopolymers for additive manufacturing processes, in Rapid Prototyping Technology-Principles and Functional Requirements. 2011, InTech.
    [31] E. Samur, M. Sedef, C. Basdogan, L. Avtan, and O. Duzgun, A robotic indenter for minimally invasive measurement and characterization of soft tissue response. Medical Image Analysis, 2007. 11(4): p. 361-373.
    [32] S.S. Rao, Engineering optimization: theory and practice. John Wiley & Sons, 2009.

    無法下載圖示 校內:2023-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE