簡易檢索 / 詳目顯示

研究生: 陳正維
Chen, Cheng-Wei
論文名稱: 垂直吸音障板之吸音性能研究
A Research on the Properties of Vertical Sound-Absorbing Panels
指導教授: 蔡耀賢
Tsay, Yaw-Shyan
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 建築學系
Department of Architecture
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 96
中文關鍵詞: 微孔式金屬擴張網大空間音環境空間吸音體低頻吸音複層構造
外文關鍵詞: micro-expanded metal mesh, large space acoustics, sound-absorbing baffles, low-frequency absorption, multilayer structure
相關次數: 點閱:78下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中大型空間如體育場館、游泳池、會議中心、購物中心、工廠等場所,往往因為大容積及表面材質設計,而有迴響過長導致環境嘈雜以及使用者聽覺上不舒適等問題,然而,此類型空間受限於使用情境,地板及牆面不便於施作吸音材質,一般多由天花板材質著手,常見的方式有平面式吸音天花板或懸吊式空間吸音體。
    本研究以空間吸音體中之垂直吸音障板為研究對象,第一階段依據CNS 9056(ISO 354)於迴響室進行試體之吸音測試,探討多孔質及金屬盒狀吸音障板的吸音特性及性能因子,開發出可針對低頻帶吸音的金屬盒狀吸音障板,以其框體厚度、複層與否、分層比例、隔板材料和摺板摺數等構造參數為操作變因,討論金屬盒狀吸音障板的單元性能,並以廣義邏輯函數分析多孔質及金屬盒狀吸音障板排列間距與單元性能和單位投影面積性能的關係。第二階段以國立成功大學中正堂為應用吸音障板的模擬空間,以Odeon進行空間聲學模擬,確認基本空間模型的再現性後,再進行配置吸音障板的各方案模擬,依據模擬結果,討論於大空間中的吸音障板應用建議。
    研究結果顯示框體厚度是影響金屬盒狀吸音障板性能的關鍵因子,框體厚度30 cm及20 cm的組別可作為針對100及125 Hz的低頻吸音器,將其內部分層時,採用金屬擴張網隔板比實心鋁隔板佳,可以提升部分中高頻帶的性能,且分層比例越接近對分越好,框體厚度30 cm組別125 Hz的吸音係數都在0.6-0.8之間,於100 Hz亦可達到0.4-0.7。有別於需要固定在牆面或天花板等背櫬面上的低頻共振吸音體,金屬盒狀吸音障板得以單元形式自由吊掛,在解決低頻問題的同時兼顧空間設計的自由度。
    吸音障板的單元性能隨著排列間距增加而提升,障板高度2-2.5倍以下之間距為線性區段,其上為漸進區段;單位投影面積性能則隨著排列間距增加而下降,障板高度1.5-2倍之間距為緩降區段,此範圍外為陡降區段。越接近吸音峰值頻帶,受間距變化的影響越顯著,但與低頻帶性能較無關聯或特定趨勢。Odeon模擬結果顯示障板總表面積對排列間距與迴響時間的相對趨勢較無影響,但吸音障板表面積的增減主導迴響時間的變化,無論配置深淺疏密,若表面積接近,則吸音效果相似;障板裝設於中央區域比外圍區域有效,混用金屬盒狀吸音障板可使125 Hz迴響時間降至2.5 s以下。

    Large spaces are often designed with large volume and sound reflective surface material, which causes an uncomfortable hearing environment. However, in this type of venue is difficult to apply sound-absorbing materials on the floor or walls due to space utilization. Ceiling materials, including horizontal sound-absorbing ceilings and suspended space absorbers, are common methods to improve it. Sound-absorbing baffles are an economical type of space absorbers usually used to absorb high-frequency sound.
    The research takes vertical sound-absorbing panels named absorbing baffle, including porous baffles and micro-expanded metal mesh (MEMM) box absorbers, as the research object. In the first stage, MEMM box absorbers that can absorb low-frequency sound were developed, and their structural parameters were studied. The relationship between the row distance and the performance of baffles was analyzed with a generalized logistic function. In the second stage, the Zhong Zheng Hall in NCKU was simulated with Odeon for the application of absorbing baffles.
    The research results show that the frame thickness is a key variable affecting the performance of MEMM box absorbers and the absorption peak is at 100 or 125 Hz with a frame thickness of 30 and 20 cm. The MEMM partition is better than the solid aluminum partition. Partitions can improve the performance of mid-to-high frequency bands and the closer the partition ratio is to 1:1, the better the performance is. The absorption coefficient can reach 0.6-0.8 at 125 Hz and 0.4-0.7 at 100 Hz.
    Unit performance of a baffle increases with distance, whose linear segment is less than 2-2.5 times the height of baffles, and above is the progressive segment. By contrast, unit projected area performance decreases with distance, whose gentle segment is 1.5-2 times the height of baffles. Performance at a frequency close to the absorption peak is more affected by the distance, while the low-frequency band is less affected. The simulation results demonstrate that the reverberation time has a linear relationship with the row distance and the frequency band with higher sound absorption is less affected by the distance. The total surface area of baffles dominates the change of the reverberation time. However, it is more effective to install the baffle in the central area than in the peripheral area.

    摘要 I 誌謝 XV 目錄 XVII 表目錄 XIX 圖目錄 XXI 第一章 緒論 1 1-1 研究背景與動機 1 1-2 研究目的 2 (1) 開發針對低頻之吸音障板 2 (2) 分析影響垂直吸音障板性能的關鍵因子 2 (3) 探討空間中應用吸音障板之設計策略 2 1-3 研究範圍與流程 3 (1) 研究範圍 3 (2) 研究流程 4 第二章 相關理論與文獻回顧 7 2-1 建築室內聲學概述 7 (1) 空間中的聲音 7 (2) 室內聲學課題 7 2-2 吸音材料及吸音構造 8 (1) 多孔質吸音體(Porous absorber) 8 (2) 板式吸音體(Panel absorber) 9 (3) 共振吸音體(Resonant absorber) 10 2-3 空間吸音體 12 (1) 空間吸音體概述 12 (2) 空間吸音體之吸音性能因子相關研究 13 2-4 微穿孔板及微孔式金屬擴張網 17 (1) 微穿孔板共振吸音體概述 17 (2) 微穿孔板共振吸音體之理論與相關研究 17 (3) 微孔式金屬擴張網 21 2-5 空間聲學評估參數及指標 22 (1) 聲壓級(Sound pressure level, SPL) 22 (2) 迴響時間(Reverberation time, RT) 22 (3) 清晰度(Clarity index) 24 (4) 語音傳輸指標(Speech transmission index, STI) 25 第三章 研究方法 27 3-1 吸音障板單元構造 27 (1) 多孔質吸音障板構造選定 27 (2) 金屬盒狀吸音障板構造設計 27 3-2 吸音障板性能測試 31 (1) 測試環境 31 (2) 測試使用儀器 32 (3) 測試方法 33 (4) 試體安裝設定 34 (5) 評定方法 36 3-3 吸音障板空間應用聲學模擬 37 (1) 研究對象 37 (2) 空間聲學模型 38 (3) 聲學模型建構 40 (4) 吸音障板模擬設定 43 第四章 吸音障板實測性能討論 45 4-1 多孔質吸音障板單元性能 45 (1) 木絲水泥吸音障板 45 (2) 岩棉吸音障板 45 (3) 多孔質吸音障板性能小結 45 4-2 金屬盒狀吸音障板單元性能 49 (1) 構造A–單層長方體空氣層 49 (2) 構造B–雙層長方體空氣層 50 (3) 構造C–單層摺板三角柱空氣層 53 (4) 構造D–雙層長方體複合摺板三角柱空氣層 53 (5) 金屬盒狀吸音障板性能小結 58 4-3 吸音障板空間分布性能 61 (1) 性能評定及迴歸式 61 (2) 多孔質吸音障板空間分布性能 63 (3) 金屬盒狀吸音障板空間分布性能 69 (4) 空間分布性能因子小結 73 第五章 吸音障板空間應用討論 75 5-1 模擬驗證 75 5-2 全面鋪設單一材質吸音障板 76 (1) 迴響時間 77 (2) 間距 79 (3) 間高比 80 (4) 容面比 81 5-3 局部鋪設及混用異材質吸音障板 82 (1) 單一材質吸音障板 83 (2) 混用異材質吸音障板 85 5-4 空間應用小結 87 第六章 結論與建議 89 6-1 研究結論 89 6-2 後續研究建議 91 參考文獻 93

    (一) 中文文獻
    1. CNS 9056─聲學─迴響室之吸音量測(2008)。
    2. 王季卿(2003)。空間吸聲體的設計與應用。聲學技術,22(04),213-218。
    3. 李愉庭(2020)。大空間多目的使用之空調配置與聲學改善策略——以一大學體育場館為例。國立成功大學。台南市。取自https://hdl.handle.net/11296/9txgtt。
    4. 馬大猷(1975)。微穿孔板吸聲結構的理論和設計。中國科學,01。
    5. 馬大猷(1983)。微穿孔板聲阻抗的直接準確測量。聲學學報,8(05),257-262。
    6. 馬大猷(1988)。微穿孔板結構的設計。聲學學報,13(03),174-180。
    7. 馬大猷(1997)。微穿孔板吸聲體的準確理論和設計。聲學學報,22(05),385-393。
    8. 馬大猷(2003)。微穿孔吸聲體吸收帶寬極限。聲學學報,28(06),561-562。
    9. 馬大猷(2006)。微穿孔板的實際極限。聲學學報,31(06),481-484。
    10. 章奎生(1983)。國內外空間吸聲體發展與應用概況。環境工程,03。
    11. 章奎生(1987)。空間吸聲體降噪工程技術經濟效益的綜合評價與探討。噪聲與振動控制,01。
    12. 陳彥伯(2005)。垂片型空間吸音體吸音性能之預測研究。國立成功大學。台南市。取自https://hdl.handle.net/11296/jhj7up。
    13. 曾品緁(2020)。摺板結構金屬擴張網之吸音性能研究。國立成功大學。台南市。取自https://hdl.handle.net/11296/w5wpnu。
    14. 項端祈(1998)。空間吸聲體的設計及其在建筑中的應用。建筑創作,02),64-72。
    15. 劉克(2002)。微穿孔板和微縫板吸聲體研究進展。應用聲學,21(01),3-6, 25。
    16. 劉克、C.Nocke、馬大猷(2000)。擴散場內微穿孔板吸聲特性的實驗研究。聲學學報,25(03),211-218。
    17. 賴聖智(2004)。圓筒形空間吸音體設置方式對吸音力之影響研究。國立成功大學。台南市。取自https://hdl.handle.net/11296/k525yp。 
    (二) 日文文獻
    1. 日本建築学会(1997)。音響材料の特性と選定。日本建築学会,丸善 (発売)。

    (三) 英文文獻
    1. ATSDR. (2004). Toxicological profile for synthetic vitreous fibers
    2. Agency for Toxic Substances and Disease Registry
    3. Barron, M. (2009). Auditorium acoustics and architectural design (Second ed.). Spon Press. https://doi.org/https://doi.org/10.4324/9780203874226
    4. Cops, A. (1985). Absorption properties of baffles for noise control in industrial halls. Applied Acoustics, 18, 435-448.
    5. DIN 18041 - Acoustic quality in rooms - Specifications and instructions for the room acoustic design. (2016). Berlin, Germany.
    6. Doelle, L. L. (1972). Environmental acoustics. McGraw-Hill Companies.
    7. EASE 4.3 User’s Guide & Tutorial. (2009). EASE Software.
    8. Garrido, J. A., Zamarreño, T., & Girón, S. (2012). Virtual models for the prediction of acoustic fields of Manuel de Falla Auditorium in Granada, Spain. Applied Acoustics, 73(9), 921-935.
    9. Ginn, K. B. (1978). Architectural acoustics (Second ed.). Brüel & Kjaer.
    10. Gould, H. A., & Yerges, L. F. (1956). Results of Functional Sound Absorber Installations in Two Industrial Plants. Noise Control, 2(2), 26-29. https://doi.org/10.1121/1.2369183
    11. Haas, H. (1951). The influence of a single echo on the audibility of speech. Acoustica, 1, 49-58. https://cir.nii.ac.jp/crid/1571980074594431232
    12. Helmholtz, H. L. F. (1912). On the Sensations of Tone as a Physiological Basis for the Theory of Music (A. J. Ellis, Trans.; Fourth ed.). Longmans, Green.
    13. Hodgson, M., Eldada, M. V., & Simard, L. P. (1995a). Evaluation of the performance of suspended baffle arrays in typical industrial sound fields. Part I. 1: 8 scale‐model experiments. The Journal of the Acoustical Society of America, 97(1), 339-348.
    14. Hodgson, M., Eldada, M. V., & Simard, L. P. (1995b). Evaluation of the performance of suspended baffle arrays in typical industrial sound fields. Part II. Prediction. The Journal of the Acoustical Society of America, 97(1), 349-353.
    15. Houtgast, T., & Steeneken, H. J. (1971). Evaluation of speech transmission channels by using artificial signals. Acta Acustica United With Acustica, 25(6), 355-367.  
    16. Houtgast, T., & Steeneken, H. J. (1973). The modulation transfer function in room acoustics as a predictor of speech intelligibility. Acta Acustica United With Acustica, 28(1), 66-73.
    17. IEC 60268-16 - International Standard: Sound system equipment – Part 16: Objective rating of speech intelligibility by speech transmission index. (2011). Switzerland.
    18. ISO 354 - Acoustics - Measurement of sound absorption in a reverberatioin room. (2003).
    19. Kobayashi, Y., Kitamura, T., & Yamada, S. (2005). Development of sound absorbers for large spaces. Building Acoustics, 12, 237-254.
    20. Koutsouris, G. (2020). Odeon Application Note – Modelling baffles. In: ODEON Room Acoustics Software.
    21. Kuttruff, H. (2016). Room acoustics (6th ed.). Crc Press.
    22. Lin, J.-Y., Tsay, Y.-S., & Tseng, P.-C. (2021). Development of Folded Expanded Metal Mesh with Sound Absorption Performance. Applied Sciences, 11(15). https://doi.org/10.3390/app11157021
    23. Long, M. (2014). Architectural Acoustics (Second ed.). Elsevier.
    24. Mosa, A., Putra, A., Ramlan, R., & Al-Ameri, E. (2018). Micro-perforated panel absorber arrangement technique: A review. Journal of Advanced Research in Dynamical and Control Systems, 10, 372-381.
    25. Nocke, C. (2018). DIN 18041-a German view. Proceedings of Euronoise,
    26. Odeon User's Manual Version 17. (2021). ODEON Room Acoustics Software.
    27. Olson, H. F. (1946). Functional sound absorbers. RCA Review, 7(4), 503-521.
    28. Orlowski, R. J. (1984). The arrangement of sound absorbers for noise reduction--results of model experiments at 1: 16 scale. Noise Control Engng. J., 22(2), 54-60.
    29. Orlowski, R. J. (1990). Scale modelling for predicting noise propagation in factories. Applied Acoustics, 31(1-3), 147-171.
    30. Rebke, E. (1987). The effect of various placements and densities on the sound absorption of baffles. Canadian Acoustics, 15, 5-10.
    31. Reichardt, W., Alim, O. A., & Schmidt, W. (1974). Abhängigkeit der grenzen zwischen brauchbarer und unbrauchbarer durchsichtigkeit von der art des musikmotives, der nachhallzeit und der nachhalleinsatzzeit. Applied Acoustics, 7(4), 243-264.
    32. Sakagami, K., Morimoto, M., & Koike, W. (2006). A numerical study of double-leaf microperforated panel absorbers. Applied Acoustics, 67(7), 609-619. https://doi.org/10.1016/j.apacoust.2005.11.001  
    33. Sakagami, K., Nakamori, T., Morimoto, M., & Yairi, M. (2009). Double-leaf microperforated panel space absorbers: A revised theory and detailed analysis. Applied Acoustics, 70(5), 703-709. https://doi.org/10.1016/j.apacoust.2008.09.004
    34. Shtrepi, L. (2019). Investigation on the diffusive surface modeling detail in geometrical acoustics based simulations. J Acoust Soc Am, 145(3), EL215. https://doi.org/10.1121/1.5092821
    35. Wattez, Y., Tenpierik, M., & Nijs, L. (2018). The influence of profiled ceilings on sports hall acoustics: Ground effect predictions and scale model measurements. Applied Acoustics, 130, 156-167. https://doi.org/10.1016/j.apacoust.2017.09.023
    36. Yairi, M., Sakagami, K., & Morimoto, M. (2007, 2-7 September). Double leaf microperforated panel space absorbers: an experimental study for further improvement 19th International Congress on Acoustics Madrid.

    下載圖示
    2023-09-01公開
    QR CODE