| 研究生: |
張延全 Chang, Yen-Chuan |
|---|---|
| 論文名稱: |
虛擬樣本篩選機制 A Virtual Sample Sieving Mechanism |
| 指導教授: |
利德江
Li, Der-Chiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 高階管理碩士在職專班(EMBA) Executive Master of Business Administration (EMBA) |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 小樣本學習 、資訊擴散 、虛擬樣本 、樣本篩選 |
| 外文關鍵詞: | small sample learning, information diffusion, virtual sample, sample selection |
| 相關次數: | 點閱:95 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在過往小樣本學習方法中,虛擬樣本產生法已被證實能有效提升機械學習演算法的學習結果。然而在過往的虛擬樣本產生方法中,對於如何管控所產生之虛擬樣本的品質並未有明確的定義,如Huang and Moraga (2004) 所提出的擴散神經網路雖有考量屬性相關性於樣本生成過程,然而該方法卻僅侷限於屬性間的相關性必須大於0.9時,而如 Li et al. (2007) 所提出的整體趨勢擴散 (mega-trend-diffusion, MTD) 技術則是在假設屬性間獨立情況下,於產生樣本過程並未考量此間關聯性,而導致所產生之虛擬樣本超出母體範圍。雖小樣本資訊不足盡信,然小樣本資料本屬母體之部分集合,若能因而據此而生成保有小樣本特性之虛擬樣本,則可確保其合理性。因此本研究依此概念提出一套虛擬樣本篩選機制,藉由小樣本屬性間的關聯性來進行樣本篩選。本研究以MTD為例,於實驗結果顯示,經篩選過後的虛擬樣本除能保有小樣本之資訊外,於使用多元線性迴歸、以及倒傳遞類神經網路建模後,對於預測準確度能有更佳的改善。
Past small sample learning methods, utilizing virtual sample generation (VSG) methods has been shown to effectively enhance the outcomes of machine learning algorithms. However, most of the VSG methods do not have a clear definition on how to control the quality of the generated virtual samples; such as the diffusion neural network (DNN) proposed by Huang and Moraga (2004). Although the considerations are related to the sample generation process, DNN is limited in the correlation between attributes which must be greater than 0.9. In addition, the mega-trend-diffusion (MTD) technique proposed by LI et al. (2007) assumes the relationship between attributes is independent, i.e. the correlations are not considered in the sample generation process. This assumption would thus lead the generated samples to excess scopes of the populations. Although the information abstracted from small datasets is not convincible, the small datasets are parts of the populations. As well as the characters of the small datasets are reserved in the virtual samples, the rationality of them still can be ensured. Therefore, this study proposes a virtual sample sieving mechanism, with a small sample correlation between attributes for sample selection. The experimental results show that the characters of small datasets can be reserved when the virtual samples created by MTD are sieved by the proposed mechanism. In addition, the prediction accuracy of the multiple linear regressions and the back-propagation neural networks can further be improved.
Anthony, M., & Biggs, N. (1997). Computational Learning Theory: Cambridge University Press.
Chao, G. Y., Tsai, T. I., Lu, T. J., Hsu, H. C., Bao, B. Y., Wu, W. Y., . . . Lu, T. L. (2011). A new approach to prediction of radiotherapy of bladder cancer cells in small dataset analysis. Expert Systems with Applications, 38(7), 7963-7969.
Dorigo, M. & Gambardella, L. M., (1996). Ant colony system: a cooperative learning agents. IEEE Transactions on Systems, Man and Cybernetics, Part B, 26, 29-41.
Efron, B., & Tibshirani, R. J. (1993). An Introduction to the Bootstrap: New York: Chapmen & Hall.
Guo, G. D., & Dyer, C. R. (2005). Learning from examples in the small sample case: Face expression recognition. IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics, 35(3), 477-488.
Holland, J.H., (1975). Adaptation in Nature and Artificial Systems, Ann Arbor: University of Michigan Press.
Huang, C. F. (1997). Principle of information. Fuzzy Sets and Systems, 91(1), 69-90.
Huang, C. F., & Moraga, C. (2004). A diffusion-neural-network for learning from small samples. International Journal of Approximate Reasoning, 35(2), 137-161.
Huang, C. J., Wang, H. F., Chiu, H. J., Lan, T. H., Hu, T. M., & Loh, E. W. (2010). Prediction of the Period of Psychotic Episode in Individual Schizophrenics by Simulation-Data Construction Approach. Journal of Medical Systems, 34(5), 799-808.
Ivănescu, V. C., Bertrand, J. W. M., Fransoo, J. C., & Kleijnen, J. P. C. (2006). Bootstrapping to solve the limited data problem in production control: an application in batch process industries. Journal of the Operational Research Society, 57(1), 2-9.
Jang, J. S. R. (1993). ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man and Cybernetics, 23(3), 665-685.
Kirkatrick, S., Gelatt, C. D., & Vecchi, M. P., (1983). Optimization by Simulated Annealing. Science, 220, 671-680.
Kuo, Y., Yang, T., Peters, B. A., & Chang, I. (2007). Simulation metamodel development using uniform design and neural networks for automated material handling systems in semiconductor wafer fabrication. Simulation Modelling Practice and Theory, 15(8), 1002-1015.
Lanouette, R., Thibault, J., & Valade, J. L. (1999). Process modeling with neural networks using small experimental datasets. Computers & Chemical Engineering, 23(9), 1167-1176.
Li, D. C., Chen, C. C., Chang, C. J., & Chen, W. C. (2012a). Employing Box-and-Whisker plots for learning more knowledge in TFT-LCD pilot runs. International Journal of Production Research, 50(6), 1539-1553.
Li, D. C., Chen, C. C., Chen, W. C., & Chang, C. J. (2012b). Employing dependent virtual samples to obtain more manufacturing information in pilot runs. International Journal of Production Research, 50(23), 6886-6903.
Li, D. C., Chen, L. S., & Lin, Y. S. (2003). Using Functional Virtual Population as assistance to learn scheduling knowledge in dynamic manufacturing environments. International Journal of Production Research, 41(17), 4011-4024.
Li, D. C., Fang, Y. H., Lai, Y. Y., & Hu, S. C. (2009a). Utilization of virtual samples to facilitate cancer identification for DNA microarray data in the early stages of an investigation. Information Sciences, 179(16), 2740-2753.
Li, D. C., Hsu, H. C., Tsai, T. I., Lu, T. J., & Hu, S. C. (2007a). A new method to help diagnose cancers for small sample size. Expert Systems with Applications, 33(2), 420-424.
Li, D. C., Huang, W. T., Chen, C. C., & Chang, C. J. (2013). Employing virtual samples to build early high-dimensional manufacturing models. International Journal of Production Research.
Li, D. C., & Lin, Y. S. (2006). Using virtual sample generation to build up management knowledge in the early manufacturing stages. European Journal of Operational Research, 175(1), 413-434.
Li, D. C., & Liu, C. W. (2010). Extending Attribute Information for Small Data Set Classification. IEEE Transactions on Knowledge and Data Engineering, 24(3), 452-464.
Li, D. C., Liu, C. W., Fang, Y. H., & Chen, C. C. (2010a). A yield forecast model for pilot products using support vector regression and manufacturing experience-the case of large-size polariser. International Journal of Production Research, 48(18), 5481-5496.
Li, D. C., Liu, C. W., & Hu, S. C. (2010b). A learning method for the class imbalance problem with medical data sets. Computers in Biology and Medicine, 40(5), 509-518.
Li, D. C., Tsai, T. I., & Shi, S. (2009b). A prediction of the dielectric constant of multi-layer ceramic capacitors using the mega-trend-diffusion technique in powder pilot runs: case study. International Journal of Production Research, 47(1), 51-69.
Li, D. C., Wu, C. S., & Chang, F. M. M. (2005). Using data-fuzzification technology in small data set learning to improve FMS scheduling accuracy. International Journal of Advanced Manufacturing Technology, 27(3-4), 321-328.
Li, D. C., Wu, C. S., Tsai, T. I., & Chang, F. M. M. (2006). Using mega-fuzzification and data trend estimation in small data set learning for early FMS scheduling knowledge. Computers & Operations Research, 33(6), 1857-1869.
Li, D. C., Wu, C. S., Tsai, T. I., & Lina, Y. S. (2007b). Using mega-trend-diffusion and artificial samples in small data set learning for early flexible manufacturing system scheduling knowledge. Computers & Operations Research, 34(4), 966-982.
Li, R. M., Yao, J. Q., Shang, H. J., & Ruan, D. (2010). An optimal model of information diffusion principles to risk and decision analysis of breast cancer morbidity. [Proceedings Paper]. Soft Computing, 14(12), 1297-1303.
Liu, X. P., Zhang, J. Q., Cai, W. Y., & Tong, Z. J. (2010). Information diffusion-based spatio-temporal risk analysis of grassland fire disaster in northern China. [Proceedings Paper]. Knowledge-Based Systems, 23(1), 53-60.
Niyogi, P., Girosi, F., & Poggio, T. (1998). Incorporating prior information in machine learning by creating virtual examples. Proceedings of the IEEE, 86(11), 2196-2209.
Oniśko, A., Druzdzel, M. J., & Wasyluk, H. (2001). Learning Bayesian network parameters from small data sets: application of Noisy-OR gates. International Journal of Approximate Reasoning, 27(2), 165-182.
Papari, M. M., Yousefi, F., Moghadasi, J., Karimi, H., & Campo, A. (2011). Modeling thermal conductivity augmentation of nanofluids using diffusion neural networks. International Journal of Thermal Sciences, 50(1), 44-52.
Tsai, T. I., & Li, D. C. (2008). Approximate modeling for high order non.-linear functions using small sample sets. Expert Systems with Applications, 34(1), 564-569.
Tukey, J. W. (1977). Exploratory data analysis: Reading (MA): Addison-Wesley.
Vapnik, V. N. (2000). The Nature of Statistical Learning Theory: Springer, New York.
Wang, H. F., & Huang, C. J. (2009). Data construction method for the analysis of the spatial distribution of disastrous earthquakes in Taiwan. International Transactions in Operational Research, 16(2), 189-212.
Wang, Y., & Witten, I. (1997). Inducing Model Trees for Continuous Classes. Paper presented at the Proceedings of the Poster Papers of the European Conference on Machine Learning, Prague, Czech Republic.
Wang, Y. F. (2003). On-demand forecasting of stock prices using a real-time predictor. IEEE Transactions on Knowledge and Data Engineering, 15(4), 1033-1037.