簡易檢索 / 詳目顯示

研究生: 楊勝州
Young, Sheng-Joue
論文名稱: 氧化鋅材料與應用於光電子元件製作之研究
ZnO materials and their application of optoelectronic devices
指導教授: 姬梁文
Ji, Liang-Wen
張守進
Chang, Shoou-Jinn
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 147
中文關鍵詞: 氧化鋅光檢測器場效電晶體蕭特基二極體奈米線
外文關鍵詞: nanowires, ZnO, photodetector, FET
相關次數: 點閱:73下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 二、六族氧化鋅材料為一新興之半導體材料,頗具研究價值,本論文研究內容涵蓋三個大方向,包含: (1)氧化鋅薄膜系列半導體材料應用於光電子元件之研製。(2)氧化鋅奈米線之合成與其光學特性之分析。(3)氧化鋅奈米線機械性質之探討與楊式模數之理論計算。其個別之研究結果如下所述:
    首先我們製作蕭特基二極體來研究氧化鋅金半接面之特性,我們使用銥金屬來當做蕭特基的接觸電極;在歐姆接觸電極方面,我們則利用傳統的鈦/鋁/鈦/金四種金屬並加以退火之處理。根據電性量測結果發現我們使用銥金屬來當做電極時,其蕭特基二極體具有良好的整流特性,緊接著我們也利用熱離子放射理論、諾德理論與電容-電壓量測等三種方法來計算金屬銥與氧化鋅半導體材料間之蕭特基能障值分別為: 0.824、0.837與0.924 eV。進一步的我們也將元件操作在不同的高溫下來研究其金半接面之特性並計算不同溫度下的蕭特基能障值,由結果可以發現隨著溫度的升高,金半接面的蕭特基能障值有降低的趨勢。
    在氧化鋅紫外光光檢測器的研製方面,我們使用銥金屬來製作金半金光檢測器,根據電性量測結果發現: 當偏壓為5伏特時,其光電流與暗電流大小分別為4.3 x 10-4 與1.64 x 10-6 安培,兩者差了約兩個級數;另外,在光響應量測方面:當偏壓為1伏特且入射光為370 nm時,可以得到0.138 A/W 的光響應值;進一步再進行雜訊等效功率與檢測度的量測與計算,當給定偏壓為1伏特且頻率為100赫茲時,其值分別為6 x 10-13 W與1.18 x 1012 cmHz0.5W-1,由以上結果可以顯示出我們的元件有不錯的操作特性。更進一步的我們將製作完成的氧化鋅金半金光檢測器在通氧且溫度為500 0C的環境下進行熱退火,經由光電流、暗電流與光響應的量測結果發現有熱退火的元件其操作特性提升了,其原因為銥金屬在通氧的熱處理後會形成二氧化銥而增加了光的穿透性與提升金半接面的蕭特基能障。
    在論文的第三部分中,我們嘗試利用光輔助的化學氣相沉積法在金屬與半導體接面沉積一層二氧化矽絕緣層來降低我們氧化鋅金半金光檢測器的暗電流,藉由製作此金-絕-半光檢測器來達到元件的最佳化。
    另外,在氧化鋅金氧半場效電晶體的製作上,我們藉著利用射頻濺鍍的方式來調變主動區氧化鋅層的厚度,使得我們的金氧半場效電晶體達到正常的操作效果,此處我們亦使用光輔助的化學氣相沉積儀來成長二氧化矽薄膜,其厚度約為32 nm。在元件的特性量測方面: 金氧半場效電晶體的閘極漏電流比金半場效電晶體降低近三個數量級(10-5A→10-2A),汲極電流、最大轉移電導及閘極操作平台分別為61.1 mA/mm、 10.2 mS/mm及2 V。即是在高溫操作氧化鋅場效電晶體的最大轉移電導及汲極電流仍然有45.7 mA/mm及 7.67 mS/mm,顯示出利用寬能隙半導體製作之場效電晶體在高溫下依然具有不錯之操作特性。
    此論文中我們也研究氧化鋅之一維奈米結構的成長,亦即氧化鋅奈米線的成長。成長的方法為具有大面積成長潛力之低溫水溶液化學合成法。首先藉由成長溫度之調變來獲得氧化鋅奈米線之最佳晶格結構,根據研究結果發現,當溫度為90 0C 時氧化鋅奈米線具有最佳之晶格結構;此外我們也藉由調變不同的成長時間來觀測不同階段的氧化鋅奈米線型態,並整理出氧化鋅奈米線的成長機制,進而可以輕易的來得到任何所需之不同粗細長短的氧化鋅奈米柱來加以應用。最後,藉由利用黃光曝光微影製程,我們可以控制氧化鋅奈米線之成長區域,亦即具備選區成長之技術。
    論文的最後則是氧化鋅奈米線機械效應之研究。此部分研究我們所使用的氧化鋅奈米線是利用爐管經由自組式的固液氣(self-catalyzed vapor-liquid-solide, VLS)方式在玻璃基板上所成長。並藉由控制不同的氧流量來得到粗細與長度不同的氧化鋅奈米線。A樣本為直徑約100奈米,長度約2000奈米;B樣本則為直徑約30奈米,長度約800奈米的氧化鋅奈米線。接著將我們的氧化鋅奈米線樣本進行奈米壓印實驗。經由奈米壓印所量得之實驗結果發現:一開始隨著施加在氧化鋅奈米線上的應力增加,使得氧化鋅奈米線產生正常的形變,當施加更大的應力時,則會有挫曲的現象發生。發生挫曲的應力大小由氧化鋅奈米線的長短粗細比例來決定。由於樣本B的長寬比例比樣本A大,所以施加比較小的應力即可發生挫曲的現象。最後再以尤拉公式為基礎利用理論計算的方式獲得氧化鋅奈米線的楊氏模數(Young’s modulus)介於117~454 GPa間。

    ZnO has attracted much attention in recent years. So, in this thesis, we not only discuss the performance of ZnO-related optoelectronic devices but also study the growth and mechanical characteristics of one-dimensional ZnO nanostructure. The abstract describes as follows:
    In the beginning of this thesis, the research of ZnO Schottky diodes with Iridium (Ir) Schottky contact electrode were described. From the I-V curve, it was found that the ZnO Schottky diode shows rectification and the Schottky barrier height between ZnO and Ir were 0.824 eV, 0.837 eV and 0.92 which were calculated by thermionic emission model, Norde model and C-V measurement, respectively. We also increased the measured temperature and found the value of barrier height decreased with the temperature increased.
    In addition, ZnO metal-semiconductor-metal (MSM) photodetectors with Ir electrodes were also fabricated. ZnO epitaxial films used in this study were grown on sapphire (0001) substrates by using RF plasma-assisted molecular beam epitaxy. It was found that Schottky barrier heights at the non-annealed and 500oC-annealed Ir/ZnO interfaces were around 0.65 and 0.78 eV, respectively. With an incident wavelength of 370 nm and 1 V applied bias, it was found that the maximum responsivities for the Ir/ZnO/Ir MSM photodetectors with and without thermal annealing were 0.18 and 0.13 A/W, respectively. For a given bandwidth of 100 Hz and 1 V applied bias, we found that noise equivalent power and corresponding detectivity D* were 6x10-13 W and 1.18x1012 cmHz0.5W-1, respectively.
    Furthermore, ZnO MSM and MIS UV photodetectors were fabricated. In this study, ZnO epitaxial films were also grown on sapphire (0001) substrates by MBE. We deposited different 5 kinds of SiO2 layer by Photo-assistant chemical vapor deposition (Photo-CVD) followed by Ir film deposition and photolithography. From the I-V analysis, it was found that we can achieve smaller dark current, larger photocurrent to dark current contrast ratio and larger UV to visible rejection ratio from the ZnO MIS UV photodetector with 98 nm photo-CVD SiO2 layer. It was also found that we can improve the performance of ZnO MIS PDs with 98 nm photo-CVD SiO2 layer by 500 0C O2 annealing.
    On the part of the ZnO field-effect-transistors (FETs). We fabricated the ZnO-based metal-semiconductor-field-effect-transistor (MESFET) and metal-oxide-semiconductor-field-effect-transistor (MOSFET). High quality SiO2 was successfully deposited onto ZnO by photochemical vapor deposition (photo-CVD) as the insulating layer. The fabricated ZnO-based MESFETs compared with similar structures, it can be found that the gate leakage current was decreased to more than three orders of magnitude by inserting the photo-CVD oxide layer in between ZnO and gate metal. With a 2 m gate length, we found the saturated Ids and maximum gm of the fabricated ZnO-based MOSHFET were 61.1 mA/mm and 10.2 mS/mm, respectively, at room temperature. Even operated at higher temperature, 150oC, the gm and Id of device still keep at 45.7 mA/mm and 7.67 mS/mm. Such a result indicated that the ZnO MOSFETs with photo-CVD SiO2 films is highly potential for application in hard environment.
    In this thesis, we also research the growth of one-dimensional ZnO nanowires. The well-aligned crystalline ZnO nanowire arrays were fabricated by low-temperature chemical-bath deposition. Zn(NO3)2/NH4OH solution was used to deposite ZnO nanowires on the glass substrates by the hydrothermal treatment at 90oC. We prepared different thinckness of ZnO seed layer by RF sputtering. We observed the thicker ZnO seed caused more perpendicular ZnO nanowires and resulted in inclined ZnO nanowires. Furthermore, the dimensional structure of ZnO hexagonal crystals become deformed nanowires. The ZnO nanowire arrays were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction and photoluminescence spectroscopy. Furthermore, the ZnO nanowire arrays exhibited a strong band-edge emission centered at 380 nm after 450 oC vacuum annealing. Besides, we also have the ability to control the size of the ZnO NWs , whenever length or radius and the selected area to grow the ZnO NWs.
    Finally, the mechanical properties of vertical single-crystal ZnO nanowires on ZnO:Ga/glass templates were characterized by nanoindentation experiments in this work. The results from X-ray diffraction and Raman spectra show good crystal quality for the ZnO nanowires. The buckling loads were found to be 1465 and 215 μN for the ZnO nanowires of 100 and 30 nm diameters, respectively. When fixed-fixed column mode was used, it was found that Young’s modulus of the ZnO nanowires of 100 and 30 nm diameters were 117 and 232 GPa while critical buckling strains were 0.62% and 0.35%, respectively. On the other hand, when we employed fixed-pinned column mode, it can be seen that Young’s modulus were 229 and 454 GPa while critical buckling strains were 0.32% and 0.18%, respectively. Buckling behavior of the ZnO nanowires was significantly predicted by Euler buckling model in this work.

    Contents Abstract (in Chinese)………………………………………………………...I Abstract (in English)………………………………………………………...V Acknowledgement.…………………………………………………………IX Contents…………………………………………………………………….XI Table Captions…………………………………………………………....XIV Figure Captions…………………………………………………………...XV Chapter 1. Introduction 1-1 Background……………………………………………..1 1-2 Basic properties of ZnO………………………………...2 1-3 Organization of this dissertation………………………..3 Chapter 2. ZnO Schottky diodes with Iridium contact electrodes 2-1 Introduction …………………………………………......9 2-2 The basic physics of Schottky contact ……………….....9 2-2-1 Current transport mechanisms ………………………..10 2-3 The Calculated method of Schottky barrier height …...11 2-3-1 Thermionic emission model …………………………..11 2-3-2 Norde model …………………………………………..13 2-3-3 Capacitance-Voltage measurement method …………..13 2-4 Fabrication system …………………………………….14 2-4-1 ZnO substrate …………………………………………14 2-4-2 Contacts ……………………………………………….14 2-5 The performance of fabricated ZnO Schottky diodes ...16 2-5-1 Current-Voltage-Temperature (I-V-T) measurement ….16 2-5-2 Capacitance-Voltage(C-V) measurement ……………..18 2-6 Summary………..................................................…….19 Chapter 3. ZnO Metal-Semiconductor-Metal (MSM) photodetectors (PDs) with Iridium contact electrodes 3-1 Introduction…………………………………………...32 3-2 Experiments…………………………………………...34 3-3 Results and discussion………………………………...35 3-4 Summary……………………………………………...39 Chapter 4. ZnO Metal-Insulator-Semiconductor (MIS) PDs with photo-CVD SiO2 layer 4-1 The growth process of ZnO sample…………………..49 4-2 The fabrication of ZnO MSM and MIS PDs………….50 4-3 Optical properties of ZnO layer………………………51 4-4 The characteristics of the fabricated ZnO MSM and MIS PDs……………………………………………...52 4-5 Summary……………………………………………...53 Chapter 5. ZnO Metal-Oxide-Semiconductor (MOS) FET with photo-CVD SiO2 layer 5-1 Introduction…………………………………………..60 5-2 ZnO Sample definite…………………………………61 5-3 The Fabrication and Mask Design of ZnO MESFET and MOSFET…………………………………………….62 5-4 The AFM analysis of Photo-CVD SiO2 Surface……..63 5-5 The Transfer Characteristics、Transconductance、gate leakage current and Ids-Vds characteristics for ZnO MESFET and MOSFET devices…………………….64 5-6 The Summary of ZnO MOS-FET……………………69 Chapter 6. The growth of ZnO nanowires by chemical-bath deposition 6-1 Introduction……………………………………….....84 6-2 Effect of seed layer with different thickness on morphology of ZnO nanorod arrays…………………85 6-3 Results and discussion…………………………….....86 6-4 Summary…………………………………………......90 Chapter 7. Nanoscale mechanical characteristics of ZnO NWs 7-1 Introduction…………………………………………103 7-2 Experiments………………………………………...105 7-3 Results and discussion……………………………...107 7-4 Summary……………………………………………112 Chapter 8. Conclusions and Future Work 8-1 Conclusions…………………………………………118 8-2 Future work…………………………………………121 Reference…………………………………………………………………..123 Publication List of S. J. Young VITA

    [1] S. Strite, M. E. Lin, and H. Morkoc, “Progress and prospects for GaN and the III-V-nitride semiconductors,” Thin Solid Films, vol. 231, pp. 197-210, 1993.
    [2] R. F. Davis, “Ⅲ-Ⅴ nitrides for electronic and optoelectronic Applications,” Proc. IEEE, vol. 5, pp. 702, 1991.
    [3] M. A. Khan, M. S. Shur, J. N. Kuzunia, Q. Chen, J. Burm, and W. Schaff, “Temperature activated conductance in GaN/AlGaN heterostructure field-effect transistors operating at temperatures up to 300-degrees-c,” Appl. Phys. Lett., vol. 66, pp. 1083-1085, 1995.
    [4] O. Aktas, Z. F. Fan, S. N. Mmohammand, A. E. Botchkarev, and H. Morkoc, “High temperature characteristics of AlGaN/GaN modulation doped field-effect transistors,” Appl. Phys. Lett., vol. 69, pp. 3872-3874, 1996.
    [5] J. Pankove, E. Miller, D. Richmann, and J. Berkeyheiser, J. Lumin., vol. 4, pp. 63, 1971.
    [6] S. Nakamura, M. Senoh, N. Iwasa, and S. I. Nagahama, “High-power InGaN single-quantum-well-structure blue and violet light-emitting diodes,” Appl. Phys. Lett., vol. 67, pp. 1868-1870, 1995.
    [7] S. Nakamura, “First Ⅲ-Ⅴ-nitride-based violet laser diodes,” J. Cryst. Growth, vol. 170, pp. 11-15, 1997.
    [8] Y. Chen, D. M. Bagnall, H. J. Koh, K. T. Park, K. Hiraga, Z. Zhu, and
    T. Yao, “Plasma assisted molecular beam epitaxy of ZnO on c-plane
    sapphire: Growth and characterization,” J. Appl. Phys., vol. 84, pp.3912-3918, 1998.
    [9] S. J. Pearton, D. P. Norton, K. Ip, and Y. W. Heo, T. Steiner, “Recent
    advances in processing of ZnO,” J. Vac. Sci. Technol. B, vol. 22, pp.
    932-948, 2004.
    [10] D. C. Look, “Recent advances in ZnO materials and devices,” Mater.
    Sci. Eng. B-Solid State Mater. Adv. Technol., vol. 80, pp. 383-387,
    2001.
    [11] M. Wraback, H. Shen, S. Liang, C. R. Gorla, and Y. Lu, “High contrast, ultrafast optically addressed ultraviolet light modulator based upon optical anisotropy in ZnO films grown on R-plane sapphire,” Appl. Phys. Lett., vol. 74, pp. 507-509, 1999.
    [12] J. M. Lee, K. K. Kim, S. J. Park, and W. K. Choi, “Low-resistance and nonalloyed ohmic contacts to plasma treated ZnO,” Appl. Phys. Lett., vol. 78, pp. 3842-3844, 2001.
    [13] J. E. Nausea, “ZnO broadens the spectrum,” III-V’s Review, vol. 12, pp. 28, 1999.
    [14] Y. Chen, D. Bagnell, and T. Yao, “ZnO as a novel photonic material for the UV region,” Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., vol. 75, pp. 190, 2000.
    [15] D. C. Look, D. C. Reynolds, J. W. Hemsky, R. L. Jones, and J. R. Sizelove, “Production and annealing of electron irradiation damage in ZnO,” Appl. Phys. Lett., vol. 75, pp. 811-813, 1999.
    [16] D. C. Look, J. W. Hemsky, and J. R. Sizelove, “Residual native shallow donor in ZnO,” Phys. Rev. Lett., vol. 82, pp. 2552-2555, 1999.
    [17] F. D. Auret, S. A. Goodman, M. Hayes, M. J. Legodi, H. A. van Laarhoven, and D. C. Look, “Electrical characterization of vapor-phase-grown single-crystal ZnO,” Appl. Phys. Lett., vol. 80, pp. 1340-1342, 2002.
    [18] S. O. Kucheyev, J. E. Bradley, J. S. Williams, C. Jagadish, and M. V. Swain, “Mechanical deformation of single-crystal ZnO,” Appl. Phys. Lett., vol. 80, pp. 956-958, 2002.
    [19] T. Aoki, D. C. Look, and Y. Hatanaka, “ZnO diode fabricated by excimer-laser doping,” Appl. Phys. Lett., vol. 76, pp. 3257-3258, 2000.
    [20] P. M. Verghese and D. R. Clarke, “Piezoelectric contributions to the electrical behavior of ZnO varistors,” J. Appl. Phys., vol. 87, pp. 4430-4438, 2000.
    [21] C. R. Gorla, N. W. Emanetoglu, S. Liang, W. E. Mayo, Y. Lu, M. Wraback, and H. Shen, “Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on (01(1)over-bar2) sapphire by metalorganic chemical vapor deposition,” J. Appl. Phys., vol. 85, pp. 2595-2602, 1999.
    [22] H. Ohta, K. Kawamura, M. Orita, M. Hirano, N. Sarukura, and H. Hosono, “Current injection emission from a transparent p-n junction composed of p-SrCu2O2/n-ZnO,” Appl. Phys. Lett., vol. 77, pp. 475-477, 2000.
    [23] M. Joseph, H. Tabata, and T. Kawai, “P-type electrical conduction in ZnO thin films by Ga and N codoping,” Jpn. J. Appl. Phys.:Part 2, vol. 38, pp. L1205-L1207, 1999.
    [24] S. Krishnamoorthy, A. A. Iliadis, A. Inumpudi, S. Choopun, R. D. Vispute, and T. Venkatesan, “Observation of resonant tunneling action in ZnO/Zn0.8Mg0.2O devices,” Solid-State Electron., vol. 46, pp. 1633-1637, 2002.
    [25] Y. Li, G. S. Tompa, S. Liang, C. Gorla, C. Lu, and J. Doyle, “Transparent and conductive Ga-doped ZnO films grown by low pressure metal organic chemical vapor deposition,” J. Vac. Sci. Technol. A, vol. 15, pp. 1063-1068, 1997.
    [26] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo and T. Steiner, “Recent advances in processing of ZnO,” J. Vac. Sci. Technol. B, vol. 22, pp. 932-948, 2004.
    [27] U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys., vol. 98, artn 041301, 2005.
    [28] L. K. Singh and H. Mohan, “Electroluminescence in (ZnO-CdO) alloy system,” Indian J. Pure Appl. Phys., vol. 13, pp. 486-488, 1975.
    [29] A. R. Hutson, “Hall effect studies of doped zinc oxide single
    crytals,” Phys. Rev. Lett., vol. 108, pp. 222-230, 1957.
    [30] D. C. Look, J. W. Hemsky, and J. R. Sizelove, “Residual native shallow donor in ZnO,” Phys. Rev. Lett., vol. 82, pp. 2552-2555, 1999.
    [31] B. J. Jin, S. H. Bae, S. Y. Lee, and S. Im, “Effects of native defects on optical and electrical properties of ZnO prepared by pulsed laser deposition,” Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., vol. 71, pp. 301-305, 2000.
    [32] D. M. Hofmann, A. Hofstaetter, F. Leiter, H. Zhou, F. Henecker, B. K.Meyer, S. B. Orlinskii, J. Schmidt, and P. G. Baranov, “Hydrogen: A relevant shallow donor in zinc oxide,” Phys. Rev. Lett., vol. 88, artn 045504, 2002.
    [33] C. G. Van de Walle, “Strategies for controlling the conductivity of wide-band-gap semiconductors,” Phys. Status Solidi B, vol. 229, pp. 221-228, 2002.
    [34] S. F. J. Cox, E. A. Davis, P. J. C. King, J. M. Gil, H. V. Alberto, R. C. Vilao, J. Piroto Duarte, N. A. De Campos, and R. L. Lichti, “Shallow versus deep hydrogen states in ZnO and HgO,” J. Phys.-Condens. Matter, vol. 13, pp. 9001-9010, 2001.
    [35] C. G. Van de Walle, “Hydrogen as a cause of doping in zinc oxide,” Phys. Rev. Lett., vol. 85, pp. 1012-1015, 2000.
    [36] J. Gutowski, N. Presser, and I. Broser, “Acceptor-exciton complexes in ZnO-a comprehensive analysis of their electronic states by high-resolution magneto-optics and excitation spectroscopy,” Phys. Rev. B, vol. 38, pp. 9746-9758, 1988.
    [37] S. Bethke, H. Pan, and B. W. Wessels, “Luminescence of heteroepitaxial zinc-oxide,” Appl. Phys. Lett., vol. 52, pp. 138-140, 1988.
    [38] B. J. Jin, S. Im, and S. Y. Lee, “Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition,” Thin Solid Films, vol. 366, pp. 107-110, 2000.
    [39] D. M. Bagnall, Y. F. Chen, M. Y. Shen, Z. Zhu, T. Goto, and T. Yao, “Room temperature excitonic stimulated emission from zinc oxide epilayers grown by plasma-assisted MBE,” J. Cryst. Growth, vol. 184, pp. 605-609, 1998.
    [40] E. G. Bylander, “Surface effects on low-energy cathodoluminescence of zinc-oxide,” J. Appl. Phys., vol. 49, pp. 1188-1195, 1978.
    [41] N. Riehl and O. Ortman, Z. Elektrochem., vol. 60, pp. 149, 1952.
    [42] F. A. Kro¨ger and H. J. Vink, “The origin of the fluorescence in self-activated ZnS, CdS, and ZnO,” J. Chem. Phys., vol. 22, pp. 250, 1954.
    [43] I. Y. Prosanov and A. A. Politov, “INTRINSIC DEFECTS AND LUMINESCENCE OF ZINC-OXIDE,” Inorg. Mater., vol. 31, pp. 663-664, 1995.
    [44] N. Y. Garces, L. Wang, L. Bai, N. C. Giles, L. E. Halliburton, and G.Cantwell, “Role of copper in the green luminescence from ZnO crystals,” Appl. Phys. Lett., vol. 81, pp. 622-624, 2002.
    [45] H. J. Egelhaaf and D. Oelkrug, “Luminescence and nonradiative deactivation of excited states involving oxygen defect centers in polycrystalline ZnO,” J. Cryst. Growth, vol. 161, pp. 190-194, 1996.
    [46] D. Hahn and R. Nink, “Zur grunen lumineszenzdes des zinkoxyds .I. thermolumineszenz,” Phys. Kondens. Mater., vol. 3, pp. 311, 1965.
    [47] M. Liu, A. H. Kitai, and P. Mascher, “Point-defects and luminescence-centers in zinc-oxide and zinc-oxide doped with manganese,” J. Lumines., vol. 54, pp. 35-42, 1992.

    [48] H. Sheng, S. Muthukumar, N. W. Emanetoglu, and Y. Lu, “Schottky
    diode with Ag on (11(2)over-bar0) epitaxial ZnO film,” Appl. Phys.
    Lett., vol. 80, pp. 2132-2134, 2002.
    [49] D. C. Look, “Recent advances in ZnO materials and devices,” Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., vol. 80, pp. 383-387, 2001.
    [50] H. Ohta, K. Kawamura, M. Orita, M. Hirano, N. Sarukura, and H. Hosono, “Current injection emission from a transparent p-n junction composed of p-SrCu2O2/n-ZnO,” Appl. Phys. Lett., vol. 77, pp. 475-477, 2000.
    [51] A. A. Iliadis, R. D. Vispute, T. Venkatesan, and K. A. Jones, “Ohmic metallization technology for wide band-gap semiconductors,” Thin Solid Films, vol. 420, pp. 478-486, 2002.
    [52] A. Inumpudi, A. A. Iliadis, S. Krishnamoorthy, S. Choopun, R. D. Vispute, and T. Venkatesan, “Pt-Ga ohmic contacts to n-ZnO using focused ion beams,” Solid-State Electron., vol. 46, pp. 1665-1668, 2002.
    [53] H. K. Kim, S. H. Han, T. Y. Seong, and W. K. Choi, “Low-resistance Ti/Au ohmic contacts to Al-doped ZnO layers,” Appl. Phys. Lett., vol. 77, pp. 1647, 2000.
    [54] H. K. Kim, S. H. Han, T. Y. Seong, and W. K. Choi, “Electrical and structural properties of Ti/Au ohmic contacts to n-ZnO,” J. Electrochem. Soc., vol. 148, pp. G114-G117, 2001.
    [55] H. Sheng, N. W. Emanetoglu, S. Muthukumar, S. Feng, and Y. Lu, “Nonalloyed Al ohmic contacts to MgxZn1-xO,” J. Electron. Mater., vol. 31, pp. 811-814, 2002.
    [56] H. Sheng, N. W. Emanetoglu, S. Muthukumar, B. V. Yakshinskiy, S. Feng, and Y. Lu, “Ta/Au ohmic contacts to n-type ZnO,” J. Electron. Mater., vol. 32, pp. 935-938, 2003.
    [57] H. K. Kim, K. K. Kim, S. J. Park, T. Y. Seong, and I. Adesida, “Formation of low resistance nonalloyed Al/Pt ohmic contacts on n-type ZnO epitaxial layer,” J. Appl. Phys., vol. 94, pp. 4225, 2003.
    [58] S. Y. Kim, H. W. Jang, J. K. Kim, C. M. Jeon, W. I. Park, G. C. Yi, and J. L. Lee, “Low-Resistance Ti/Al Ohmic Contact on Undoped ZnO,” J. Electron. Mater., vol. 31, pp. 868, 2002.
    [59] C. A. Mead, “Surface barriers on ZnSe and ZnO,” Phys. Lett., vol. 18, pp. 218, 1965.
    [60] R. C. Neville and C. A. Mead, “Surface barriers on zinc oxide,” J. Appl. Phys., vol. 41, pp. 3795, 1970.
    [61] J. C. Simpson and F. Cordaro, “Characterization of deep levels in zinc-oxide,” J. Appl. Phys., vol. 63, pp. 1781-1783, 1988.
    [62] N. Ohashi, J. Tanaka, T. Ohgaki, H. Haneda, M. Ozawa, and T. Tsurumi, “Isothermal capacitance transient spectroscopy for deep levels in Co- and Mn-doped ZnO single crystals,” J. Mater. Res., vol. 17, pp. 1529-1535, 2002.
    [63] F. D. Auret, S. A. Goodman, M. Hayes, M. J. Legodi, and H. A. van Laarhoven, “Electrical characterization of 1.8 MeV proton-bombarded ZnO,” Appl. Phys. Lett., vol. 79, pp. 3074-3076, 2001.
    [64] B. J. Coppa, R. F. Davis, and R. J. Nemanich, “Gold Schottky contacts on oxygen plasma-treated, n-type ZnO(000(1)over-bar),” Appl. Phys. Lett., vol. 82, pp. 400-402, 2003.
    [65] Y. Liu, C. R. Gorla, S. Liang, N. Emanetoglu, Y. Lu, H. Shen, and M. Wraback, “Ultraviolet detectors based on epitaxial ZnO films grown by MOCVD,” J. Electron. Mater., vol. 29-74, pp. 69, 2000.
    [66] J. K. Kim and J. L. Lee, “GaN MSM Ultraviolet Photodetectors with Transparent and Thermally Stable RuO2 and IrO2 Schottky Contacts,” J. Electrochem. Soc., vol. 151, pp. G190-G195, 2004.
    [67] Marvin L. Cohen, “(110) SURFACE OF GaAs,” J. Vac. Sci. Technol., vol. 16, pp. 1307, 1979.
    [68] Neamen, “Semiconductor Physics and Devices,” McGRAW. Hill., 2003.
    [69] E. H. Rhoderick, and R. H. Williams, “Metal-Semiconductor Contacts,” Oxford Science Publication, 1988.
    [70] S. K. Cheung and N. W. Cheung, “Extraction of schottky diode parameters from forward current-voltage characteristics,” Appl. Phys. Lett., vol. 49, pp.85-87, 1986.
    [71] H. Norde, “Modified forward IV plot for schottky diodes with high series resistance,” J. Appl. Phys., vol. 50, pp. 5052-5053, 1979.
    [72] K. E. Bohlin, “Generalized Norde plot including determination of the ideality factor,” J. Appl. Phys., vol. 60, pp. 1223-1224, 1986.
    [73] J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou and C. M. Chang, “Effects of thermal annealing on the indium tin oxide Schottky contacts of n-GaN,” Appl. Phys. Lett., vol. 72, pp. 3317-3319, 1998.
    [74] H. von Wenckstern, E. M. Kaidashev, M. Lorenz, H. Hochmuth, G. Biehne, J. Lenzner, V. Gottschalch, R. Pickenhain, and M. Grundmann, “Lateral homogeneity of Schottky contacts on n-type ZnO,” Appl. Phys. Lett., vol. 84, pp. 79-81, 2004.
    [75] Dhananjay, J. Nagaraju, S. B. Krupanidhi, “Investigations on magnetron sputtered ZnO thin films and Au/ZnO Schottky diodes,” Physica B, vol. 391, pp. 344-349, 2007.

    [76] Y. Z. Chiou, S. J. Chang, Y. K. Su, C. K. Wang, T. K. Lin and B. R. Huang, ”Photo-CVD SiO2 layers on AlGaN and AlGaN-GaN MOSHFET,” IEEE Trans. Electron Dev., Vol. 50, pp. 1748-1752, 2003.
    [77] E. Monroy, E. Muňoz, F. J. Sánchez, F. Calley, E. Calleja, B. Beaumont, P. Gibart, J. A. Muňoz and F. Cussó, “High-performance GaN p-n junction photodetectors for solar ultraviolet applications,” Semicond. Sci. Technol., Vol. 13, pp. 1042–1046, 1998
    [78] G. Y. Xu, A. Salvador, W. Kim, Z. Fan, C. Lu, H. Tang, H. Morkoç¸ G. Smith, M. Estes, B. Goldenberg, W. Yang and S. Krishnankutty, “High speed, low noise ultraviolet photodetectors based on GaN p-i-n and AlGaN(p)-GaN(i)-GaN(n) structures,” Appl. Phys. Lett., Vol. 71, pp. 2154-2156, 1997
    [79] N. Biyikli, I. Kimukin, O. Aytur and E. Ozbay, “Solar-blind AlGaN-based p-i-n photodiodes with low dark current and high
    detectivity,” IEEE Photon. Technol. Lett., Vol. 16, pp. 1718-1720, 2004
    [80] O. Katz, V. Garber, B. Meyler, G. Bahir and J. Salzman, “Anisotropy in detectivity of GaN Schottky ultraviolet detectors: Comparing lateral and vertical geometry,” Appl. Phys. Lett., Vol. 80, pp. 347-349, 2002
    [81] T. Palacios, E. Monroy, F. Calle and F. Omnès, “High-responsivity submicron metal-semiconductor-metal ultraviolet detectors,” Appl. Phys. Lett., Vol. 81, pp. 1902-1904, 2002
    [82] T. K. Lin, S. J. Chang, Y. K. Su, Y. Z. Chiou, C. K. Wang, C. M. Chang and B. R. Huang, "ZnSe homoepitaxial MSM photodetectors with transparent ITO contact electrodes," IEEE Tran. Electron. Dev., Vol. 52, pp. 121-123, 2005
    [83] M. J. Manfra, L. N. Pfeiffer, K. W. West, H. L. Stormer, K. W. Baldwin, J. W. P. Hsu, D. V. Lang and R. J. Molnar, “High-mobility AlGaN/GaN heterostructures grown by molecular-beam epitaxy on GaN templates prepared by hydride vapor phase epitaxy,” Appl. Phys. Lett., Vol. 77, pp. 2888-2890, 2000
    [84] T. M. Barnes, J. Leaf, S. Hand, C. Fry and C. A. Wolden, “A comparison of plasma-activated N2/O2 and N2O/O2 mixtures for use in ZnO:N synthesis by chemical vapor deposition,” J, Appl. Phys., Vol. 96, pp. 7036-7044, 2004.
    [85] H. Kato, M. Sano, K. Miyanoto and T. Yao, “Homoepitaxial Growth of high-quality Zn-polar ZnO films by plasma-assisted molecular beam epitaxy,” Jpn. J. Appl. Phys., Vol. 42, pp. L1002-L1005, 2003.
    [86] Y. I. Alivov, E. V. Kalinina, A. E. Cherenkov, D. C. Look, B. M. Ataev, A. K. Omaev, M. V. Chukichev and D. M. Bagnall, “Fabrication and characterization of n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates,” Appl. Phys. Lett., Vol. 83, pp. 4719-4721, 2003.
    [87] S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu and H. Shen, “ZnO Schottky ultraviolet photodetectors,” J. Crystal Growth, Vol. 225, pp. 110-113, 2001.
    [88] A. Mang, K. Reimann and St. Rübenacke, “Band gaps, crystal-field splitting, spin-orbit coupling, and exciton binding energies in ZnO under hydrostatic pressure,” Solid State Commun., Vol. 94, pp. 251-254, 1995.
    [89] Setiawan, Z. Vashaei, M. W. Cho, T. Yao, H. Kato, M. Sano, K. Miyamoto, I. Yonenaga and H. J. Ko, “Characteristics of dislocations in ZnO layers grown by plasma-assisted molecular beam epitaxy under different Zn/O flux ratios,” J. Appl. Phys., Vol. 96, pp. 3763-3768, 2004.
    [90] E. M. Kaidashev, M. Lorenz, H. von Wenckstern, A. Rahm, H. C. Semmelhack, K. H. Han, G. Benndorf, C. Bundesmann, H. Hochmuth and M. Grundmann, “High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition,” Appl. Physi. Lett., Vol. 82, pp. 3901-3903, 2003.
    [91] K. Sakurai, D. Iwata, S. Fujita and S. Fujita, “Growth of ZnO by molecular beam epitaxy using NO2 as oxygen source,” Jpn. J. Appl. Phys., Vol. 38, pp. 2606-2608, 1999
    [92] H. J. Ko, Y. F. Chen, S. K. Hong and T. Yao, “MBE growth of high-quality ZnO films on epi-GaN,” J. Crystal Growth, Vol. 209, pp. 816-821, 2000.
    [93] L. Pintilie and I. Pintilie, ”Ferroelectrics: new wide-gap materials for UV detection,” Mater. Sci. Eng. B, Vol. 80, pp. 388-391. 2001.
    [94] J. K. Kim, H. W. Jang, C. M. Jeon and J. L. Lee, “GaN metal-semiconductor-metal ultraviolet photodetector with IrO2 Schottky contact,” Appl. Phys. Lett., Vol. 81, pp. 4655-4657, 2002.
    [95] J. K. Kim and J. L. Lee, “GaN MSM ultraviolet photodetectors with transparent and thermally stable RuO2 and IrO2 Schottky contacts,” J. Electrochem. Soc., Vol. 151, pp. G190-G195, 2004.
    [96] H. W. Jang and J. L. Lee, “Transparent Ohmic contacts of oxidized Ru and Ir on p-type GaN,” J. Appl. Phys., Vol. 93, pp. 5416-5421, 2003.
    [97] Z. X. Mei, Y. Wang, X. L. Du, M. J. Ying, Z. Q. Zeng, H. Zheng, J. F. Jia, Q. K. Xue and Z. Zhang, “Controlled growth of O-polar ZnO epitaxial film by oxygen radical preconditioning of sapphire substrate,” J. Appl. Phys., Vol. 96, pp. 7108-7111, 2004.
    [98] Y. F. Chen, H. J. Ko, S. K. Hong and T. Yao, “Layer-by-layer growth of ZnO epilayer on Al2O3(0001) by using a MgO buffer layer,” Appl. Phys. Lett., Vol. 76, pp. 559-561, 2000.
    [99] D. Seghier and H. P. Gislason, “Investigation of persistent photoconductivity in nitrogen-doped ZnSe/GaAs heterojunctions grown by MBE,” J. Crystal Growth, Vol. 214, pp. 511-515, 2000
    [100] G. J. Hu, L. Zhang L, N. Dai, L. Y. Chen and M. C. Tamargo, “Persistent photoconductivity in Ga delta-doped ZnSe,” Solid State Communications, Vol. 111, pp. 631-634, 1999
    [101] C. K. Wang, S. J. Chang, Y. K. Su, Y. Z. Chiou, C. S. Chang, T. K. Lin, H. L. Liu and J. J. Tang, “High detectivity GaN metal-semiconductor-metal UV photodetectors with transparent tungsten electrodes,” Semicond. Sci. Technol., Vol. 20, pp. 485-489, 2005.
    [102] O. Katz, G. Bahir and J. Salzman, “Persistent photocurrent and surface trapping in GaN Schottky ultraviolet detectors,” Appl. Phys. Lett., Vol. 84, pp. 4092-4094, 2004
    [103] M. Salis, A. Anedda, F. Quarati, A. J. Blue and W. Cunningham, “Photocurrent in epitaxial GaN,” J. Appl. Phys., Vol. 97, Art. No. 033709, 2005
    [104] F. Vigué, E. Tournié and J. P. Faurie, “Evaluation of the potential of ZnSe and Zn(Mg)BeSe compounds for ultraviolet photodetection,” IEEE J. Quan. Electron., Vol. 37, No. 9, pp. 1146-1152, 2001.
    [105] T. G. M. Kleinpenning, “Low-frequency noise in Schottky barrier diodes,” Solid-State Electron., Vol. 22, pp. 121-128, 1979.
    [106] M. Razeghi and A. Rogalski, “Semiconductor ultraviolet detectors ,” J, Appl. Phys., vol. 79, pp. 7473-7044, 1996.
    [107] C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang, J. K. Sheu and J. F. Chen, “GaN metal-semiconductor-metal ultraviolet photodetectors with transparent indium-tin-oxide Schottky Contacts,” IEEE Photon. Technol. Lett., vol. 13, pp. 848-850, 2001
    [108] D. V. Kuksenkov, H. Temkin, A. Osinsky, R. Gaska and M. A. Khan, “Low-frequency noise and performance of GaN p-n junction photodetectors”, J. Appl. Phys., vol. 83, pp. 2142-2146, 1998.
    [109] S. J. Chang, T. K. Lin, Y. K. Su, Y. Z. Chiou, C. K. Wang, S. P. Chang, C. M. Chang, J. J. Tang and B.R. Huang, “Homoepitaxial ZnSe MSM photodetectors with various transparent electrodes,”Materials Science and Engineering B., vol. 127, pp.164-168, 2006.
    [110] S. J. Young, L. W. Ji, S. J. Chang and Y. K. Su, “ZnO metal-semiconductor-metal ultraviolet sensors with various contact electrodes,” J. Crystal Growth, vol. 293, pp. 43-47, 2006.
    [111] D. C. Reynolds, D. C. Look, B. Jogai, H. Morkoc, “Similarities in the
    bandedge and deep-centre photoluminescence mechanisms of ZnO and GaN,” Solid State Commun., vol. 101, pp. 643-646, 1997.
    [112] R. P. Joshi, A. N. Dharamsi and J. McAdoo, “Simulation for the high-speed response of GaN metal-semiconductor-metal photodetectors,” Appl. Phys. Lett., vol. 64, pp. 3611-3613, 1994.
    [113] E. Monroy, F. Calle, J. L. Pau, E. Munoz, F. Omnes, B. Beaumont
    and P. Gibart, “Application and Performance of GaN Based UV Detectors,” Phys. Status Solidi A, vol. 185, pp. 91-97 (2001).
    [114] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis and J. C. Campbell, “Comprehensive characterization of metal-semiconductor-metal ultraviolet photodetectors fabricated on single-crystal GaN,” J. Appl. Phys., vol. 83, pp. 6148-6160, 1998.
    [115] A. Chini, J. Wittich, S. Heikman, S. Keller, S. P. DenBaars, U. K. Mishra,“Power and linearity characteristics of GaN MISFETs on sapphire substrate,”IEEE Electron Device Lett., vol. 25, pp. 55-57, 2004.
    [116] Z. X. Mei, X. L. Du, Y. Wang, Z. Q. Zeng, H. Zheng, J. F. Jia, Q. K.
    Xue and, Z. Zhang, “Controlled growth of Zn-polar ZnO epitaxial film by nitridation of sapphire substrate,” Appl. Phys. Lett. vol. 86,pp. 112111, 2005.
    [117] Y. F. Chen, H. J. Ko, S. K. Hong and T. Yao, “Layer-by-layer growth of ZnO epilayer on Al2O3 (0001) by using a MgO buffer layer,” Appl. Phys. Lett., vol. 76, pp. 559-561, 2000.
    [118] X. L. Du, M. Murakami, H. Iwaki, Y. Ishitani, and A. Yoshikawa, “Effects of Sapphire (0001) Surface Modification by Ga Pre-Exposure
    on the Growth of High-Quality Epitaxial ZnO Film,” Jpn. J. Appl.
    Phys., vol. 41, pp. L1043-L1045, 2002.
    [119] Shigehiko Sasa, Masashi Ozaki, Kazuto Koike, Mitsuaki Yano and Masataka Inoue, “High-performance ZnO/ZnMgO field-efect transistors using a hetero-metal-insulator-semiconductor structure,” Appl. Phys. Lett., Vol. 89, pp. 053502-1~053502-3, 2006.
    [120] C. J. Kao, Yong Wook Kwon, Y. W. Heo, D. P. Norton and S. J. Pearton, “Comparison of ZnO metal-oxide-semiconductor field effect transistor and metal-semiconductor field effect transistor structure grown on sapphire by pulsed laser deposition,”J. Vac. Sci. Technol B., Vol. 23, No. 3, pp. 1024-1028, 2005.
    [121] Junya NISHII, Akira OHTOMO, Keita OHTANI, Hideo OHNO and Masashi KAWASAKI, “High-Mobility Field-Effect Transistors Based on Single-Crystalline ZnO Channels,” Jpn. J. Appl. Phys., vol. 44, No. 38, pp. L1193-L1195, 2005.
    [122] E. M. C. Fortunato, P. M. C. Barquinba, A. C.M. B. G. Pimentel, A. M. F. Concalves, A. J. S. Marques, R. F. P. Martins and L. M. N. Pereira,“Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature,” Appl. Phys. Lett., Vol. 85, No. 13, pp. 2541-2543, 2004.
    [123] R. L. Hoffman, B. J. Norris and J. F. Wager,“ZnO-based transparent thin-film transistors,” Appl. Phys. Lett., Vol. 82, No. 5, pp. 733-735, 2003.
    [124] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M, Hirano and H. Hosono,“Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor,”Science, Vol. 300, pp.1269-1272, 2003
    [125] C. J. Huang and Y. K. Su, “Effect of substrate temperature on the properties of SiO2/InP structure prepared by photochemical vapor deposition,” J. Appl. Phys., Vol. 67, pp. 3350-3353, 1990
    [126] S. J. Chang; Y. K. Su, F. S. Juang, C. T. Lin, D. C. Chang and Y. T. Cherng, “Photo-enhanced native oxidation process for Hg0.8Cd0.2Te photoconductors,” IEEE J. Quan. Electron., Vol. 36, pp. 583-589, 2000
    [127] C. T. Lin; Y. K. Su, S. J. Chang, H. T. Huang; S. M. Chang and T. P. Sun, “Effects of passivation and extraction surface trap density on the 1/f noise of HgCdTe photoconductive detector,” IEEE Photon. Technol. Lett., Vol. 9, pp. 232-234, 1997
    [128] C. T. Lin, Y. K. Su, H. T. Huang; S. J. Chang; G. S. Chen; T. P. Sun and J. J. Luo,“Electrical properties of the stacked ZnS/photo-enhanced native oxide passivation for long wavelength HgCdTe photodiodes,” IEEE Photon. Technol. Lett., Vol. 8, pp. 676-678, 1996
    [129] U. Itoh, Y. Toyoshima, H. Onuki, N. Washida and T. Ibuki,“Vacuum ultraviolet absorption cross sections of SiH4, GeH4, Si2H6,
    and Si3H8,” J. Chem. Phys., Vol. 85, pp. 4867-4872, 1986.
    [130] H. Okabe, Photochemistry of Small Molecules, Wiley, New York, (1978).
    [131] R. Therrien, G. Lucovsky, and R. Davis,“Charge redistribution at GaN–Ga2O3 interfaces: a microscopic mechanism for low defect density interfaces in remote-plasma-processed MOS devices prepared on polar GaN faces,” Appl. Surf. Sci., Vol. 166, pp. 513-519 , 2000.
    [132] P. Feng, J. Y. Zhang, Q. H. Li, and T. H. Wang, “Individual beta-Ga2O3 nanowires as solar-blind photodetectors,” Appl. Phys. Lett. vol. 88, pp. 153107, 2006.
    [133] S. W. Chung, J. Y. Yu, and J. R. Heath, “Silicon nanowire devices ,” Appl. Phys. Lett. vol. 76, pp. 2068–2070, 2000.
    [134] Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett. vol. 84, pp. 3654–3656, 2004.
    [135] M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. vol. 4, pp. 455-459, 2005.
    [136] J. B. Baxter, and E. S. Aydil , “Nanowire-based dye-sensitized solar cells,” Appl. Phys. Lett. vol. 86, pp. 053114, 2005.
    [137] J. J. Wu and S. C. Liu, “Low Temperature Growth of Well-Aligned ZnO Nanorods by Chemical Vapor Deposition,” Adv. Mater., vol. 14, pp. 215–218, 2002.
    [138] M. C. Jeong, B. Y. Oh, W. Lee, and J. M. Myoung, “Optoelectronic properties of three-dimensional ZnO hybrid structure,” Appl. Phys. Lett. vol. 86, pp. 103105, 2005.
    [139] J. S. Lee, K. Park, M. I. Kang, I. W. Park, S.W. Kim, W. K. Chom, H. S. H, and S. Kim, “ZnO nanomaterials synthesized from thermal evaporation of ball-milled ZnO powders,” J. Cryst. Growth, vol. 254, pp. 423-431, 2003.
    [140] Lyu, S. C.; Cheol, Y. Z.; Lee, J.; Ruh, H. and Lee, H. J. “Low-Temperature Growth of ZnO Nanowire Array by a Simple
    Physical Vapor-Deposition Method,” Chem. Mater., vol. 15, pp. 3294-3299, 2003.
    [141] Y. Sun, G. M. Fuge, M. N. R. Ashfold, Chem. “Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods,” Phys. Lett. vol. 396, pp. 21-26, 2004.
    [142] Vayssieres, K. Keis, S. E. Lindquist, A. Hagfeldt, “Purpose-Built Anisotropic Metal Oxide Material: 3D Highly Oriented Microrod Array of ZnO,” J. Phys.Chem. B, vol. 105, pp. 3350 -3352, 2001.
    [143] J. Song, S. Lim, “Effect of seed layer on the growth of ZnO nanorods,” J. Phys. Chem. C, vol. 111, pp. 596, 2007.
    [144] H. Zhang, D. Yang, X. Ma, and D. Que, “Synthesis and field emission characteristics of bilayered ZnO nanorod array prepared by chemical reaction,” J. Phys. Chem. B, vol. 109, pp. 17055-17059, 2005.
    [145] D. C. Kim, B. H. Kong, H. K. Cho, D. J. Park, J. Y. Lee, “Effects of buffer layer thickness on growth and properties of ZnO nanorods grown by metalorganic chemical vapour deposition,” Nanotechnology, vol. 18, pp. 015603, 2007.
    [146] X. Liu, Z. Jin, S. Bu, J. Z, K. Yu, “ Preparation of ZnO nanorods and special lath-like crystals by aqueous chemical growth (ACG) method,” Mate. Sci. Eng. B, vol. 129, pp. 139, 2006.
    [147] X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong, “Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films,” Appl. Phys. Lett., vol. 78, pp. 2285, 2001.
    [148] J. H. Song, X. D. Wang, E. Riedo and Z. L. Wang, “Elastic property of vertically aligned nanowires,” Nano Lett., vol. 5, pp. 1954, 2005.
    [149] C. Q. Chen, Y. Shi, Y. S. Zhang, J. Zhu and Y. J. Yan, “Size Dependence of Young's Modulus in ZnO Nanowires.” Phys. Rev. Lett., vol. 96, pp. 075505, 2006.
    [150] Z. L. Wang and J. H. Song, “Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays,” Science, vol. 312, pp. 242-246, 2006.
    [151] S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, pp. 56, 1991.
    [152] E. W. Wong, P. E. Sheehan and C. M. Lieber, “Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes.” Science, vol. 277, pp. 1971 - 1975, 1997.
    [153] M. R. Falvo, G. J. Clary, R. M. Taylor II, V. Chi, F. P. Brooks, S. Washburn and R. Superfine, “Bending and buckling of carbon nanotubes under large strain,” Nature, vol. 389, pp. 582, 1997.
    [154] A. M. Morales and C. M. Lieber, “A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires ,” Science, vol. 279, pp. 208, 1998.
    [155] P. Poncharal, Z. L. Wang, D. Ugarte and W. A. de Heer, “Electrostatic Deflections and Electromechanical Resonances of Carbon Nanotubes,” Science, vol. 283, pp. 1513, 1999.
    [156] M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly and R. S. Ruoff, “Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load,” Science, vol. 287, pp. 637, 2000.
    [157] M. F. Yu, B. S. Files, S. Arepalli and R. S. Ruoff, “Tensile Loading of Ropes of Single Wall Carbon Nanotubes and their Mechanical Properties,” Phys. Rev. Lett., vol. 84, pp. 5552, 2000.
    [158] J. Zhu and S. Fan, “Nanostructure of GaN and SiC nanowires based on carbon nanotubes,” J. Mater. Res., vol. 14, pp. 1175, 1999.
    [159] C. C. Chen and C. C. Yeh, “Large-Scale Catalytic Synthesis of Crystalline Gallium Nitride Nanowires,” Adv. Mater., vol. 12, pp. 738, 2000.
    [160] L. W. Ji, T. H. Fang, S. C. Hung, Y. K. Su, S. J. Chang and R. W. Chuang, “Ultra small self-organized nitride nanotips,” J. Vac. Sci. Technol. B, vol. 23, pp. 2496, 2005.
    [161] Z. R. Dai, Z. W. Pan, and Z. L. Wang, “Ultra small self-organized nitride nanotips,” Adv. Funct. Mate., vol. 13, pp. 9, 2003.
    [162] Y. Q. Zhu, W. B. Hu, W. K. Hsu, M. Terrones, N. Grobert, J. P. Hare, H. W. Kroto, D. R. M. Walton and H. Terrones, “Generation of hollow crystalline tungsten oxide fibres,” Appl. Phys. A, vol. 70, pp.231, 2000.
    [163] Z. G. Bai, D. P. Yu, H. E Z. Gai, Q. L. Hang, G. C. Xiong and S. Q. Feng, “Nano-scale GeO2 wires synthesized by physical evaporation,” Chem. Phys. Lett., vol. 303, pp. 311, 1999.
    [164] H. Yumoto, T. Sako, Y. Gotoh, K. Nishiyama and T. Kaneko, “Growth mechanism of vapor-liquid-solid (VLS) grown indium tin oxide (ITO) whiskers along the substrate,” J. Cryst. Growth, vol.
    203, pp. 136, 1999.
    [165] V. Valcarcel, A. Souto and F. Guitian, “Development of single-crystal alpha-Al2O3 fibers by vapor-liquid-solid deposition (VLS) from
    aluminum and powdered silica,” Adv. Mater., vol. 10, pp. 138, 1998.
    [166] Z. W. Pan, Z. R. Dai and Z. L. Wang, “Nanobelts of Semiconducting Oxides,” Science, vol. 291, pp. 1947, 2001.
    [167] C. L. Hsu, S. J. Chang, H. C. Hung, Y. R. Lin, C. J. Huang, Y. K. Tseng and I. C. Chen, IEEE Trans. Nanotechnol., vol. 4, 649, 2005.
    [168] S. J. Young, L. W. Ji, S. J. Chang and X. L. Du, “ZnO metal-semiconductor-metal ultraviolet photodiodes with Au contacts,” J. Electrochem. Soc., vol. 154, pp. H26, 2007.
    [169] H. Saitoh, Y. Namioka, H. Sugata and S. Ohshio, “Nanoindentation Analysis of Al:ZnO Epitaxial Whiskers,” Jpn. J. Appl. Phys., vol. 40, pp. 6024, 2001.
    [170] S. X. Mao, M. H. Zhao and Z. L. Wang, “Nanoscale mechanical behavior of individual semiconducting nanobelts,” Appl. Phys. Lett., vol. 83, pp. 993, 2003.
    [171] A. J. Kulkarni, M. Zhou and F. J. Ke, “Orientation and size dependence of the elastic properties of zinc oxide nanobelts,” Nanotechnology, vol. 16, pp. 2749, 2005.
    [172] Y. K. Tseng, C. J. Huang, H. M. Cheng, I. N. Lin, K. S. Liu and I. C. Chen, “Characterization and Field-Emission Properties of Needle-like Zinc Oxide Nanowires Grown Vertically on Conductive Zinc Oxide Films,” Adv. Funct. Mater., vol. 13, pp. 811, 2003.
    [173] Y. K. Tseng, H. C. Hsu, W. F. Hsieh, K. S. Liu and I. C. Chen, “ Two-step oxygen injection process for growing ZnO nanorods,” J. Mater. Res., vol. 18, pp. 2837, 2003.
    [174] J. Q. Hu, Q. Li, N. B. Wong, C. S. Lee and S. T. Lee, “Synthesis of Uniform Hexagonal Prismatic ZnO Whiskers,” Chem. Mater., vol. 14, pp. 1216, 2002.
    [175] B. D. Yao, Y. F. Chan and N. Wang, “Formation of ZnO nanostructures by a simple way of thermal evaporation,” Appl. Phys. Lett., vol. 81, pp. 757, 2002.
    [176] J. M. Calleja and M. Cardona, “Resonant Raman scattering in ZnO,” Phys. Rev. B, vol. 16, pp. 3753, 1977.
    [177] Y. J. Xing, Z. H. Xi, Z. Q. Xue, X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y. Song, S. L. Zhang and D. P. Yu, “Optical properties of the ZnO nanotubes synthesized via vapor phase growth,” Appl. Phys. Lett., vol. 83, pp. 1689, 2003.
    [178] S. P. Timoshenko and J. M. Gere, Theory of Elastic Stability (McGraw-Hill, New York, 1961).
    [179] W. Lee, M. C. Jeong and J. M. Myoung, “Fabrication and application potential of ZnO nanowires grown on GaAs(002) substrates by metal–organic chemical vapour deposition Nanotechnology, vol. 15, pp. 254, 2004.
    [180] V. A. Coleman, J. E. Bradby, C. Jagadish, P. Munroe, Y. W. Heo, S. J. Pearton, D. P. Norton, M. Inoue and M. Yano, “Mechanical properties of ZnO epitaxial layers grown on a- and c-axis sapphire,” Appl. Phys. Lett., vol. 86, pp. 203105, 2005.
    [181] D. P. Yu, Z. G. Bai, Y. Ding, Q. L. Hang, H. Z. Zhang, J. J.Wang, Y. H. Zou, W. Qian, G. C. Xiong, H. T. Zhou, and S. Q. Feng, “Nanoscale silicon wires synthesized using simple physical evaporation,” Appl. Phys. Lett., vol. 72, pp. 3458, 1998.
    [182] W. Q. Han, S. S. Fan, Q. Q. Li, and Y. D. Hu, “Synthesis of gallium nitride nanorods througha carbon nanotube-con (r) ned reaction,” Science, vol. 277, pp. 1287, 1997.
    [183] W. I. Park, Y. H. Jun, S. W. Jung, and G. C. Yi, “Excitonic emissions observed in ZnO single crystal nanorods,” Appl. Phys. Lett., vol. 82, pp. 964, 2003.
    [184] N. Pan, X. Wang, K. Zhang, H. Hu, B. Xu, F. Li, and J. G. Hou, “An approach to control the tip shapes and properties of ZnO nanorods,” Nanotechnol., vol. 16, pp. 1069, 2005.
    [185] Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, “Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach,” Appl. Phys. Lett., vol. 78, pp. 407, 2001.
    [186] Y. Du, S. Han, W. Jin, C. Zhou, and A. F. J. Levi, “Polarization-dependent reflectivity from dielectric nanowires,” Appl. Phys. Lett., vol. 83, pp. 996, 2003.
    [187] K. Keem, H. Kim, G. T. Kim, J. S. Lee, B. Min, K. Cho, M. Y. Sung,
    and S. Kim, “Photocurrent in ZnO nanowires grown from Au electrodes,” Appl. Phys. Lett., vol. 84, pp. 4376, 2004.
    [188] Y. W. Heo, B. S. Kang, L. C. Tien, D. P. Norton, F. Ren, J. R. LaRoche, and S. J. Pearton, “Hydrogen and ozone gas sensing using multiple ZnO nanorods,” Appl. Phys. A, Vol. 80, pp. 1029-1032, 2005.

    無法下載圖示 校內:2028-07-01公開
    校外:2028-07-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE