| 研究生: |
黃子芩 Huang, Tzu-chin |
|---|---|
| 論文名稱: |
以聚乙二醇-600與溴化四正丁基銨之混合物為相間轉移觸媒利用固-液-液催化技術製備醋酸己酯 Synthesis of Hexyl Acetate by Solid-Liquid-Liquid Phase-Transfer Catalysis Using the Mixtures of Polyethylene Glycol-600 and Tetra-n-butylammonium Bromide as Catalysts |
| 指導教授: |
蕭旭欽
Hsiao, Hsu-chin 翁鴻山 Weng, Hung-shan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 醋酸己酯 、溴正己烷 、觸媒液相 、溴化四正丁基銨 、聚乙二醇 、固-液-液相間轉移催化 |
| 外文關鍵詞: | n-hexyl acetate, polyethyl glycol, tetra-n-butylammonium bromide, catalyst-rich liquid phase, 1-bromohexane, solid-liquid-liquid phase transfer catalyst |
| 相關次數: | 點閱:108 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文持續探討一種新穎的固-液-液相間轉移催化(SLL PTC)技術在醚化反應上的應用,探討單獨使用聚乙二醇-600(PEG-600)以及其與溴化四正丁基銨(QBr)之混合物為相間轉移觸媒時,催化醋酸鈉(NaOAc)與溴正己烷(RBr)合成醋酸己酯(ROAc)的效果,並分析各變因對反應系統的影響、探討SLL PTC系統內的相轉換情形,以找出最佳的批式反應條件。在本研究中,使用125 mL之三頸圓形玻璃瓶為反應器,進行反應實驗時,加入25 mL正庚烷、適量的水、醋酸鈉、溴正己烷和PEG(或另添加QBr)。
實驗結果顯示:以PEG-600為觸媒所形成的SLL PTC系統之觸媒液相體積遠大於以QBr為觸媒者,且在反應過程中,會有特定比例的RBr與ROAc溶在觸媒液相內,但較大比例的RBr與ROAc都溶在有機相內。隨著PEG-600用量的增加,所得的RBr轉化率呈先增加後趨於平緩之趨勢,而反應後期時ROAc生成分率趨近於1,其中以0.07 mol的用量較適宜。[本論文所研究之反應包含三相,不宜以濃度表示,所以添加之物料皆以莫耳(mol)或毫升(mL)表示。] 略微提高水用量,RBr轉化率會隨之增加、但ROAc生成分率卻隨之降低,其中以使用2.0 mL水時,可得到較高的RBr轉化率及趨近於1的ROAc生成分率。適量提高NaOAc用量,可略微提高RBr轉化率,但過多的NaOAc用量,不僅無助於提高轉化率,反而會降低ROAc生成分率,本系統較適當的NaOAc用量為0.03 mol。相同PEG用量下,PEG分子量越大,RBr轉化率越低,本反應系統宜採用PEG-400或PEG-600為相間轉移觸媒。不管是固定RBr用量或是固定RBr濃度,RBr轉化率皆隨Heptane劑量的減少而增大,生成分率則皆趨近於1。提高反應溫度可大幅提高RBr轉化率,即使在90 oC下,生成分率仍趨近於1,但為避免溶劑揮發,反應溫度不宜超過90 oC。在最佳反應條件下,催化RBr的總反應速率式可用擬一階模式來表示。
至於反應系統的相分佈模式,在PEG-600用量小於0.03 mol時,兩液相分佈模式為crp/org,而當用量大於0.035 mol時,相分佈模式則轉為org/crp,故在最佳反應條件下之SLL PTC系統,有機相為分散相、觸媒液相為連續相。另外,在混合使用觸媒效應方面,先加入QBr再加入PEG-600的觸媒加入方式,所獲得RBr轉化率較單一使用QBr或PEG,甚至QBr與PEG-600一起加入者高,兩者的最佳用量皆為0.03 mol。
In this thesis, as a continued study, the solid-liquid-liquid phase transfer catalysis (SLL PTC) technique was adopted for synthesizing n-hexyl acetate(ROAc) from 1-bromohexane(RBr) and sodium acetate(NaOAc) by using a catalyst-rich liquid phase (crp). The SLL PTC system contained a solid phase (NaOAc), two liquid phases (catalyst-rich liquid phase and organic phase). The phase transfer catalysts used were polyethylene glycol-600(PEG-600) and the mixtures of PEG-600 and tetra-n-butylammonium bromide(QBr). The conditions for forming a solid-liquid-liquid system and the optimal conditions for the esterification of RBr and NaOAc were searched and analyzed. In this study, a 125 mL 3-necked glass bottle was used as the reactor. During the reaction, 25 mL n-heptane, suitable amount of water, sodium acetate, 1-bromohexane, and PEG-600 (or PEG-600 and QBr) were added.
The results showed that the PEG-600 catalysis system owned a much larger volume of crp than the one of QBr. Specific parts of RBr and ROAc were dissolved in the crp during the reaction but most of the reagents were dissolved in the organic phase. The conversion of RBr increased with the amount of PEG-600, but became a steady when a larger amount was added. In the later period of reaction, the fractional yield approached to 1. An added amount of 0.07 mol PEG-600 showed the best result. Slightly increasing the amount of water could increase the conversion of RBr but reduce the fractional yield of ROAc as a result. Though higher conversion of RBr could be obtained by increasing the amount of NaOAc properly, yet too much NaOAc would reduce the fractional yield of ROAc. The optimal amounts of water and NaOAc are 2 mL and 0.03 mol. Higher molecular weight of PEG would reduce the conversion of RBr and both PEG-400 and PEG-600 are good candidates as the catalyst in this system. Either fixing the amount or the concentration of RBr, the conversion of RBr would be increased with the reduction of the amount of heptane, and the fractional yields were all approaching to 1. Increaseing the reaction temperature would remarkably increase the conversion of RBr and the fractional yield could remain unity even in 90 oC. To avoid the vaporization of the solvent, a reaction temperature under 90 oC could be set. In the optimal condition, the total reaction rate of RBr catalysis system could be described by quasi-first order reaction model. As the amount of PEG-600 less than 0.03 mol, the crp/org phase dispersions were likely to be formed while the phase dispersions would be inversed into org/crp as the amount of PEG-600 was higher than 0.035 mol. Therefore, in the optimal condition in the system, the organic phase was the dispersed phase and the crp was the continuous phase.
In the PEG-600 and QBr coexistent catalysis system, the addition of QBr followed with PEG-600 could obtain conversion higher than QBr or PEG-600 catalysis system and even higher than the simultaneously added system did. The optimal amounts for QBr and PEG-600 were both 0.03 mol.
[1] Starks, C. M.; Liotta, C.; Halpern, M.; “Phase-Transfer Catalysis, Fundamentals, Applications and Industrial Perspectives ”, Chapman & Hall: New York, 1994.
[2] Menger, F. M.; J. Am. Chem. Soc., 1970, 92, 5965.
[3] Tomita, A.; Ebina. N.; Tamai, Y.; J. Am. Chem. Soc., 1977, 99, p5725.
[4] Makosza, M.; Bialecka, E.; Tetrahedron Letters, 1977, 183.
[5] Solodar, J.; Tetrahedron Letters, 1971, 287.
[6] Dehmlow, E. V.; Dehmlow, S. S., “ Phase transfer catalysis ”,
Weinheim ; Deerfield Bemch, Florida; Basel, Verlag Chemin, 1983
[7] Reuben, B.; Sjoberg, K.; Chemtech., 1981, 315.
[8] Janakiraman, B.; Sharma, M. M.; Chem. Eng. Sci., 1982, 37, 1497.
[9] Jarrousse, J.;Hebd, C. R. Seances Acad Sci., Ser. C, 1951, 232, 1424
[10] Freeman, H. H.; Pure Appl. Chem., 1986, 58, 857.
[11] Mathias, L.; R. A. Vaidya, J. Am. Chem. Soc., 108, 1093, 1986.
[12] Fife, W. K.; Xin, Y.; J. Am. Chem. Soc.,1987,109,1278.
[13] Starks, C. M.; J. Am. Chem. Soc., 1971, 93, 195.
[14] Kobayashi, H.; Sonada, T.; Chem. Lett., 1982, 1185.
[15] Iwamoto, H.; Tetrahedron Letters, 1983, 24(32), 4703.
[16] Starks, C. M.; Chemtech., 1980, 110.
[17] Herriott, A. W.; Picker, D., “ Phase transfer catalysis. An evaluation of catalysis ”, J. Am. Chem. Soc., 1975, 97(9), 2345.
[18] Zerda, J. D. L.; Neumann, R.; Sasson,Y.; J. Chem. Soc.:Perkin Trans.Ⅱ, 1986, 823.
[19] Frensdorff, H. K.; J. Am. Chem. Soc., 1971, 93(3), 600.
[20] Totten, G. E.; Clinton, N. A.; JMS-Rev. Macromolecules Chem. Phys., 1988, C28 (2), 293.
[21] Hennis, H. E.; Thompson L. R., Long J. P.; I & EC Prod. Res. And Dev., 1968, 7, 2, 96.
[22] Hennis, H. E.; Easterly J. P.; Collins, L. R.; Thompsom, L. R.; I & EC Prod. Res. And Dev., 1967, 6, 193.
[23] Merker, R. L.; Scott M. J.; J. Org. Chem., 1961, 26, 5180.
[24] Kimura, Y.; Regen, S. L.; J. Org. Chem., 1983, 48, 195.
[25] Gokel, G. W.; J. Org. Chem., 1983, 48, 2837.
[26] Neumann, R.; Sasson, Y.; J. Org. Chem., 1984, 49, 3448.
[27] Starks, C. M.; J. Am. Chem. Soc., 1971; 93(1), 195
[28] Zahalka, H. A.; Sasson, Y; J. Chem. Soc. Chem. Commun., 1984, 1652
[29] Prahan, N. C.; Sharma, M. M.; Ind. Eng. Chem. Res., 1990, 29, 1103
[30] Tundo, P.; J.Org.Chem., 1979, 44, 2048
[31] Tundo, P.; Venturello, P.; Synthesis., 1979, 952
[32] Tundo, P.; Moraglio, G.; Trotta F.; Ind. Eng. Chem. Res., 1989, 28, 881
[33] Weng, H. S.; Wang, C. M.; Wang, D. H.; Ind. Eng. Chem. Res.,1997, 36, 3613
[34] Yadav, G. D.;Reddy, C. A. Ind. Eng. Chem. Res., 1999, 38, 2245
[35] 蕭旭欽, “以三液相催化技術合成醚類化合物-第三液相形成條件 及觸媒之再使用”, 國立成功大學化工研究所博士論文, 2000
[36] Liotta, C. L., Harris, H. P.; J. Am. Chem. Soc., 1974; 96, 2205
[37] Liotta, et al., Tetrahedron Letters, 1974, 28, 2417
[38] Yadav, G. D.; Sharma, M. M.; Ind. Eng. Chem. Proc. Des. Dev., 1981, 20(2). 385
[39] Arrad, O.; Sasson, Y.; J. Org. Chem., 1989, 54, 4993
[40] Glatzer H. J., Doraiswamy L. K.; Chem. Eng. Sci., 2000, 5149-5160
[41] Neumann, R.; Sasson Y.; J. Org.Chem., 1984, 49, 3448
[42] Der-Her Wang and Hung-Shan Weng; Chemical Engineering Science. Vol. 43. No. 8. pp. 2019-2024. 1988
[43] 王德和, “三液相相間轉移催化反應-氫氧化鈉與鹽類對第三液相之形成及對溴正丁烷與酚化鈉反應的影響”, 國立成功大學化工研究所博士論文, 1995
[44] 李淑瑞, “三液相相間轉移觸媒催化2,4,6-三溴酚之醚化反應動力學研究”, 國立中興大學化工研究所碩士論文, 2003
[45] Masson, D.; Magdasi, S.; Sasson, Y.; J. Org. Chem., 1991, 56, 7229
[46] Jin, G.; Ido, T,; Goto, S.; J. Chem. Eng.Jap., 1998, 31,741.
[47] Ido, T.; Yamamoto, T.; Jin, G.; Goto, S.; Chem. Eng. Sci., 1997, 52, 3511
[48] Nouguier, R.; Mchich, M.; Tetrahedron, 1988, 44, 2477
[49] Pacek, A.w., Moore, I. P.T. and Nienow, A.w. “Video Technique for Measuring Dynamics of Liquid-Liquid Dispersion During Phase Inversion.” AIChE Journal, 40, No. 12,1940 (1994).
[50] 蔡亦逵, “具有富含觸媒液相之固-液-液相間轉移催化技術-醋酸己酯之合成”, 國立成功大學化工研究所碩士論文, 2006
[51] 郭士銘, “以聚乙二醇-600為相間轉移觸媒利用三液相催化技術製備正丁基苯基醚”, 國立成功大學化工研究所碩士論文, 1999
[52] 徐君偉, “以富含相間轉移觸媒之液相催化溴正己烷與醋酸鈉之液-固反應”, 國立成功大學化工研究所碩士論文, 2004
[53] Clark, S. I. and Sawistowski, H.; Trans. IChemE, 1978, 56, 50
[54] 楊毓民、馬哲儒, “泡的合併時間”, 界面科學第六卷第一期(七十二年五月)
[55] Pacek, A.W., Nienow, A.W. and Moore, I. P. T. “On the Structure of Turbulent Liquid-Liquid Dispersed Flows in an agitated Vessel.” Chemical Engineering Science, 49, No. 20, 3485 (1994).
[56] Jin, G., Ido, T.; Goto, S.; Catalysis Today, 2003, 79-80, 471