簡易檢索 / 詳目顯示

研究生: 張儀賢
Chang, Yi-Hsien
論文名稱: 低操作電壓之數位微流體進樣傳輸晶片及其在聚合酶連鎖反應之應用
Digital Microfluidic Chips with Low Operation Voltages for Polymerase Chain Reaction pplications
指導教授: 李國賓
Lee, Gwo-Bin
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 123
中文關鍵詞: 實驗室晶片電阻溫度係數聚合酶連鎖反應介電濕潤效應數位式微流體晶片表面張力梯度
外文關鍵詞: Lab-on-a-chip (LOC), Temperature Coefficient of Resistance (TCR), Polymerase Chain Reaction (PCR), Surface Tension Gradient, Digital Microfluidics Chips (DMC), Electro-Wetting-On-Dielectric ( EWOD)
相關次數: 點閱:106下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究利用介電潤濕現象(Electro-Wetting-on-Dielectric, EWOD)設計並製作出一個低操作電壓之數位液滴(Digital Microfluidics)操作平台,以數位液滴方式進行微流體操控,此一優點為晶片上不需外加動力來源,僅利用電路操控微液滴,解決傳統微流體晶片所需外加可動元件與洩漏問題等缺點為主要目標。

      在數位液滴控制方面,嘗試製備高介電材料(High K Materials)薄膜及超疏水(Super-Hydrophobic)材料薄膜,以降低操作電壓。本研究成功的利用高介電常數薄膜(Si3N4, Ta2O5, Ba0.5Sr0.5TiO3),並利用矽油減少液滴與鐵氟龍表面之遲滯現象,將操作電壓降低至12伏特,進行數位液滴之四種基本流體操作:傳輸(Transport)、產生(Create)、分離(Cut)及合併(Merge)。

      在聚合酶連鎖反應(Polymerase Chain Reaction, PCR)部分,所設計之微型溫度控制器利用白金之電阻溫度係數(Temperature Coefficient of Resistance, TCR)在0℃至100℃的範圍內,電阻值呈線性分佈之特性,於晶片上製作一微型溫度感測器(Micro Temperature Sensor)與微型加熱器(Micro Heater),搭配一閉迴路溫度控制電路,精確控制聚合酶連鎖反應之循環溫度。

      此一整合型晶片將聚合酶連鎖反應試劑(PCR Reagnet)與核酸溶液以低操作電壓之數位液滴進樣、傳輸、混合後,藉由於晶片上所設計之親、疏水區介面,使得混合完成後之液滴因該介面之表面張力梯度(Surface Tension Gradient)移動至微型溫度控制區內。傳送完成後,利用所設計之微型溫度控制器進行聚合酶連鎖反應所需之三個階段性精確的溫度控制與快速的溫度循環,可增幅出基因的特徵片段,完成登革熱第二型病毒之互補式核酸序列(Dengue II Virus cDNA, 511bps)之增殖。

      應用此一整合型晶片做疾病偵測有下列優點:(1) 自動化準確且快速操控樣品及反應試劑,並節省70%反應試劑 (2) 快速的升降溫縮短50%的反應時間 (3) 低操作電壓系統,降低電壓對於生物檢體之影響,並避免複雜電路控制元件 (4) 此一系統除電路外,不需外加任何元件即可完成低操作電壓數位液滴操控、聚合酶連鎖反應,成功地去除了微幫浦、微閥門等可動元件,以及加熱時外加溫度感測器與加熱風扇等元件。

      本研究成功地應用上述設計,整合一新型低操作電壓之數位式微液滴傳輸與疾病快速偵測生物晶片,其包含 (1) 12伏特操控數位式微流體及(2) 9伏特微型溫度控制 二系統,整合於一便宜且生物相容性高的玻璃基材上,並針對登革熱第二型病毒之互補式核酸序列進行聚合酶連鎖反應。證實以數位液滴操控方式應用於實驗室晶片(Lab-on-a-Chip, LOC)之可行性。我們期待將數位式微液滴實驗室晶片的整合,能帶給生物醫學領域更多應用及重大貢獻。

      This study designs and fabricates a digital microfluidic platform with a low operation voltage by utilizing electro-wetting-on-dielectric (EWOD) effect. All the microfluidic movements are realized bet ween two parallel plates on this platform. The digital microfluidics chips (DMC) could make liquids digitalized, allowing for the transportation of droplets without moving micromechanical components in the device. Most fluidic operations such as sample transporting, creation, cutting and merging can be carried out on the chips using discrete droplets. The DMC does not require pumps, mixers and valves as in traditional microfluidic systems.

      The droplet motion can be manipulated by using surface tension gradient generated by EWOD, which could control of the wettability of liquids on dielectric thin film surfaces while electric potential is applied. This study tested several high K materials such as BST (Ba0.5Sr0.5TiO3), Ta2O5, Si3N4, Parylene and silicon-dioxide (SiO2). By using the Young-Lippmann equation, reducing the operating voltage of EWOD could be realized. Meanwhile, the hysteresis effect of contact angles between the droplet and the Teflon surface could be reduced by filling silicone oil into the parallel open channel. Therefore, the four fundamental microfluidics operations, transport, creation, cutting, and merging, can be performed with a lower voltage of 12 V.

      Polymerase chain reaction (PCR) is a popular technology in molecular biology. A micro temperature sensor and micro heaters have been integrated into the EWOD chip to allow for PCR operation, which is dependent on three precise temperature steps. Utilizing the characteristics of a temperature with a constant TCR (Temperature Coefficient of Resistance), this study designed a closed-loop temperature controller. The micro temperature sensor, micro heaters, and smaller reagent volume allow for a heating rate of 38.0 degrees per second and a cooling rate of 7.9 degrees per second, thus enabling for faster completion of the PCR cycles. The micro temperature sensor, micro heaters are controlled by a commercial programmable chip (AT90S8535). This chip successfully achieved 25 thermo cycles PCR for the genes of Dengue II Virus cDNA in 55 minutes.

      Utilizing micro-electro-mechanical-system (MEMS) fabrication technology, the digital microfluidics operation system and micro temperature controller could be successfully integrated into a cheap and biocompatible glass substrate to allow automated rapid infectious disease detection. By using EWOD effect, the chip could make liquids digitalized, permitting droplets to be quickly and precisely transported and mixed without any moving components. This study also designed a new hydrophilic-hydrophobic interface to induce the surface tension gradient to transport the mixed droplets into the reaction chamber. The Dengue II Virus cDNA polymerase chain reaction was also performed on the developed chip which was used to detect microorganism genes by amplifying the target sequence (511bps) with PCR. This study confirmed the feasibility of the PCR with the digital microfluidics operation.

      The integrated DMC has several advantages for infectious disease detection including (1) low voltage operation DMC, (2) 70% less sample and reagent consumption (3) 50% shorter detection time due to faster thermal cycling, and (4) high accuracy and reproducibility due to a simple and reliable fabrication process. The study successfully applied the concept of Digital Micro Fluidics to the Lab-on-a-chip. The developed microchip will be of great benefit in the future genetic analysis and infectious disease detection.

    第一章 緒論................................................................ 1 1-1 微機電系統........................................................... 1 1-2 微流體晶片之應用與優勢............................................... 1 1-3 數位微流體概念....................................................... 4 1-4 液滴致動方法......................................................... 6 1-5 介電潤濕控制數位微流體之文獻回顧.................................... 10 1-5.1 介電潤濕現象................................................... 10 1-5.2 介電材料....................................................... 15 1-5.3 疏水表面....................................................... 16 1-5.3.1 表面改質.................................................. 18 1-5.3.2 表面粗糙度................................................ 19 1-5.4 介電潤濕之數位微流體系統....................................... 21 1-5.4.1 基本架構與致動原理........................................ 21 1-5.4.2 四種微流體基本操作........................................ 24 1-5.5 生物分子吸附問題探討........................................... 26 1-6 聚合酶連鎖反應文獻回顧.............................................. 28 1-6.1 聚合酶連鎖反應原理............................................. 29 1-6.2 微型化PCR 晶片................................................. 30 1-7 研究動機............................................................ 33 1-8 論文架構............................................................ 36 第二章 實驗方法與晶片設計................................................. 38 2-1 疏水改質與介電潤濕現象實驗.......................................... 38 2-1.1 材料設計....................................................... 39 2-1.2 疏水表面量測方法............................................... 43 2-1.2.1 本質接觸角度量測......................................... 43 2-1.2.2 動態接觸角度量測與遲滯現象............................... 43 2-1.3 介電潤濕現象實驗架構設計....................................... 46 2-2 整合型數位式微流體系統晶片.......................................... 48 2-2.1 晶片設計參數................................................... 48 2-2.2 液滴四種基本動作設計........................................... 51 2-2.4 自動進樣親疏水區設計........................................... 54 2-2.5 晶片溫度感測器及加熱器設計..................................... 56 2-2.6 整合型晶片路徑規劃............................................. 58 2-2.7 聚合酶連鎖反應實驗設計......................................... 60 2-2.8 整合型晶片系統控制架構......................................... 62 第三章 材料與製程......................................................... 65 3-1 基材及表面清潔程序.................................................. 65 3-2 介電薄膜材料製程.................................................... 66 3-2-1 濺鍍二氧化矽薄膜............................................... 66 3-2-2 化學氣相沈積氮化矽與二氧化矽................................... 68 3-2-3 氧化鉭薄膜製備................................................. 70 3-2-4 溶膠凝膠法製備鈦酸鍶鋇薄膜..................................... 72 3-2-5 聚對二甲基苯高分子化學氣相沈積................................. 75 3-3 疏水表面製程........................................................ 76 3-3-1 鐵氟龍Teflon® AF 601.................................... ...... 77 3-3.2 Micor® S100 表面製作.................................. ........ 78 3-3.3 自組單層薄膜(SAMs) .................................. ....... 78 3-3.4 微/奈米結構LB Film 沈積............................ ........... 81 3-4 整合型晶片製程...................................................... 83 第四章 結果與討論......................................................... 85 4-1 疏水表面之量測...................................................... 85 4-1.1 疏水表面試片製備結果........................................... 85 4-1.2 靜態、動態接觸角與遲滯現象量測結果............................. 88 4-1.3 疏水表層改質................................................... 89 4-2 介電潤濕現象........................................................ 91 4-3 數位液滴操控與應用.................................................. 95 4-3.1 晶片製作與封裝................................................ 95 4-3.2 四種基本操作.................................................. 97 4-3.3 親疏水區致動結果............................................. 101 4-3.4 溫度控制測試................................................. 103 4-3.5 PCR 測試..................................................... 104 4-3.6 整合型晶片之討論............................................. 107 第五章 結論與未來展望.................................................... 111 5-1 結論............................................................... 111 5-2 未來展望........................................................... 114 參考文獻................................................................. 116 自 述.....................................................................123

    參考文獻
    [1]. R. Feynman, “There's Plenty of Room at the Bottom,” Journal of Micro Electro Mechanical Systems, Vol. 1, pp. 60-66, 1992.
    [2]. R. Feynman, “Infinitesimal Machinery,” Journal of Micro Electro Mechanical Systems, Vol. 2, pp.4-14, 1993.
    [3]. 李國賓, “下一波之生物晶片-微流體生醫晶片之應用及研發,” 科學發展月刊, 385期, pp 73-77, 2005.
    [4]. A. Manz, N. Graber and H. M. Widmer, “Miniaturized Total Chemical Analysis Systems: A Novel Concept for Chemical Sensing,” Sensors and Actuators B, Vol. 1, pp. 244-248, 1990.
    [5]. M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo and D. T. Burke, ”An Integrated Nanoliter DNA Analysis Device,” Science, Vol. 282, pp. 484-487, 1998.
    [6]. J. G. spencer, “Piezoelectric Micro-Pump with Three Valves Working Peristaltically,” Sensor and Actuator A, Vol. 21-23, pp. 203-206, 1990.
    [7]. M. A. Unger, H.P. Chou, T. Thorsen, A. Scherer and S. R. Quake, “Monolithic Micro-Fabricated Valves and Pumps by Multilayer Soft Lithography,” Science, Vol. 288, pp. 113-116, 2000.
    [8]. S. K. Cho, S. K. Fan, H. Moon and C. J. Kim, “Toward Digital Microfluidics Circuits: Creating ,Transporting, Cutting and Merging Liquid Droplets by Electrowetting-Based Actuation,” The 16th IEEE Conference MEMS, Las Vegas, NV, pp. 32-52, 2002.
    [9]. W. Adamson, “Physical Chemistry of Surfaces,” Fifth Edition, Wiley-Interscience, New York, Chapter 2. 1990.
    [10]. A. Torkkeli, J. Saarilahti, A.Haara, H. Harma, T. Soukka and P. Tolonen, “Electrostatic Transportation of Water Droplets on Superhydrophobic Surfaces,” The 14th IEEE Conference MEMS, Interlaken, Switzerland, pp. 475-478, 2001
    [11]. S. K. Cho, H. Moon and C. J. Kim, “Creating, Transporting, Cutting and Merging Liquid Droplets by Electrowetting-Based Actuation For Digital Microfluidic Circuits,” Journal of Microelectromechanical Systems, Vol. 12, pp. 70-80, 2003.
    [12]. P. Y. Chiou, H. Moon, H. Toshiyoshi, C. J. Kim and M. C. Wu, “Light Actuation of Liquid by Optoelectrowetting,” Sensors and Actuators A, Vol. 104, pp. 222–228, 2003.
    [13]. 曾元泰, 楊宜達,曾繁根,錢景常, ”溫度梯度引發之微液珠致動行為之分析與研究,” The 27th Conference on Theoretical and Applied Mechanics, Tainan, Taiwan, 2003.
    [14]. A. A. Darhuber and J. P. Valentino, “Thermocapillary Actuation of Droplets on Chemically Patterned Surfaces by Programmable Microheater Arrays,” Journal of Microelectromechanical Systems, Vol. 12, pp. 873-879, 2003.
    [15]. K. Ichimura, S. K. Oh and M. Nakagawa, ”Light-Driven Motion of Liquids on a Photo Responsive Surface,” Science, Vol. 288, pp. 1624-1626, 2000.
    [16]. R. Rosario, G. Devens, A. A. Garcia, M. Hayes, J. L. Taraci, T. Clement, J. W. Dailey and S. T. Picraux, “Lotus Effect Amplifies Light-Induced Contact Angle Switching,” Journal of Physical Chemistry B. Letter, Vol. 108, pp. 12640-12642, 2004.
    [17]. T. Yasuda, K. Suzuki and I. Shimoyama, “Automatic Transportation of a Droplet on a Wettability Gradient Surface,” The 7th International Conference on Miniaturized Chemical and Biochemical Analysis Systems, pp. 1129-1132, 2003.
    [18]. J. A. Schwartz, J. V. Vykoukal and R. C. Gascoyne, “Droplet-Based Chemistry on a Programmable Micro-Chip,” Lab Chip, Vol. 4, pp. 11-17, 2004.
    [19]. A. Wixforth, “Flat Fluidics: Acoustically Driven Planar Microfluidic Devices for Biological and Chemical Applications,” Transducers, Vol. 1, pp.143-146, 2005.
    [20]. K. B. Mullis, F. Ferré and R.A. Gibbs, “The Polymerase Chain Reaction,” Birkhäuser, 1994.
    [21]. M. G. Lippmann, “Relations entre les phénomènes electriques et capillaires,” Ann. Chim. Phys. Vol.5, No. 11, pp. 494–549, 1875
    [22]. W. J. J. Welters and L. G. J. Fokkink, “Fast Electrically Switchable Capillary Effects,” Langmuir, Vol. 14, pp. 1535-1538, 1998.
    [23]. C. Decamps and J. De Coninck, “Dynamics of Spontaneous Spreading under Electrowetting Conditions,” Langmuir, Vol. 16, pp. 10150-10153, 2000.
    [24]. A. Quinn, R. Sedev and J. Ralston, “Influence of the Electrical Double Layer in Electrowetting,” Journal of Physical Chemisty B, Vol. 107, pp. 1163-1169, 2003.
    [25]. H. Moon, S. K. Cho, R. L. Garrell and C.J. Kim, “Low Voltage Electrowetting-On-Dielectric,” Journal of Applied Physics, Vol. 92, No.7, pp. 4080-4087, 2002.
    [26]. J. Y. Yoon and R. L. Garrell, “Preventing Biomolecular Adsorption in Electrowetting-Based Biofluidic Chips,” Analytical Chemistry, Vol. 75, No. 19, pp.5097-5102, 2003.
    [27]. W. Barthlott and C. Neinhuis, “Purity of the Sacred Lotus, Or Escape from Contamination in Biological Surfaces,” Planta, Vol. 202, pp. 1-8. 1997.
    [28]. J. Kim and C. J. Kim, “Nanostructured Surfaces for Dramatic Reduction of Flow Resistance in Droplet-based Microfluidics,” The 15th IEEE Conference MEMS, Las Vegas, Nevada, pp. 479-482, 2002.
    [29]. J. Seo, E. Ertekin, M. S. Pio and L. P. Lee, “Self-Assembly Templates by Selective Plasma Surface Modification of Micropatterned Photoresist,” The 15th IEEE Conference MEMS, Las Vegas, Nevada, pp. 192-195. 2002.
    [30]. D. Myers, “Surface, Interfaces and Colloids Principles and Applications,” Second Edition, Wiley-Vch, New York, Chapter 8, 1999.
    [31]. T. Onda, S. Shibuichi, N. Satoh and K. Tsujii, “Super-Water-Repellent Fractal Surfaces,” Langmuir, Vol. 12, pp. 2125-2127, 1996.
    [32]. Z.Yoshimitsu, A. Nakajima, Watanabe and T. K. Hashimoto, ”Effects of Surface Structure on the Hydrophobicity and Sliding Behavior of Water Droplets,” Langmuir, Vol. 18, pp. 5818-5822, 2002.
    [33]. J. Y. Shiu, C. W. Kuo, P. Chen and C. Y. Mou, “Fabrication of Tunable Superhydrophobic Surfaces by Nanosphere Lithography,” Chemistry of Material, Vol. 16, pp. 561-564, 2004.
    [34]. M. G. Pollack, A. D. Shenderov and R. B. Fair,”Electrowetting-Based Actuation of Droplets for Integrated Microfluidics,” Lab Chip, Vol. 2, pp. 96–101, 2002.
    [35]. J. Zeng and T. Korsmeyer, “Principles of Droplet Electrohydrodynamics for Lab-On-A-Chip,” Lab Chip, Vol. 4, pp.265–277, 2004.
    [36]. S. K. Fan, C. Hashi and C. J. Kim, “Manipulation of Multiple Droplets on NxM Grid by Cross-reference EWOD Driving Scheme and Pressure-Contact Packaging,” The 16th IEEE Conference MEMS, Kyoto, Japan, pp. 694-697, 2003.
    [37]. R. B. Fair, V. Srinivasan, H. Ren, P. Paik, V. K. Pamula and M. G. Pollack, “Electrowetting-based On-Chip Sample Processing for Integrated Microfluidics,” IEEE International Electron Devices Meeting (IEDM’03.), 2003.
    [38]. J. Fowler, H. Moon and C. J. Kim, “Enhancement of Mixing by Droplet-Based Microfluidics,” The 15th IEEE Conference MEMS, Las Vegas, Nevada, pp. 97-100, 2002.
    [39]. P. Paik, V. K. Pamula, M. G. Pollack and R. B. Fair, “Electrowetting-Based Droplet Mixers for Microfluidic Systems,” Lab Chip, Vol. 3, pp. 28-33, 2003.
    [40]. V. Srinivasan, V. K. Pamula, M. G. Pollack and R. B. Fair, “Clinical Diagnostics on Human Whole Blood, Plasma, Serum, Urine, Saliva, Sweat and Tears on a Digital Microfluidic Platform,” Micro Total Analysis System, 2003.
    [41]. H. J. J. Verheijen and M. W. J. Prins, “Reversible Electrowetting and Trapping of Charge: Model and Experiments,” Langmuir, Vol. 15, pp. 6616-6620, 1999.
    [42]. C. S. Liao, G. B. Lee, J. J. Wu, C. C. Chang, T. M. Hsieh and C. H Luo, “Micromachined Polymerase Chain Reaction System for Multiple DNA Amplification on Upper-respiratory Tract Infectious Diseases,” Biosensors and Bioelectronics, Vol. 20, pp. 1341-1348, 2005.
    [43]. R. B. Fair, V. Srinivasan, H. Ren, P. Paik, V. K. Pamula and M. G. Pollack, “Electrowetting-Based On-Chip Sample Processing for Integrated Microfluidics,” IEEE International Electron Devices Meeting (IEDM’03.), 2003.
    [44]. M. G. Pollack, P. Y. Paik, A. D. Shenderov, V. K. Pamula, F. S. Dietrich and R. B. Fair, “Investigation of Electrowetting-Based Microfluidics for Real-Time PCR Applications,” Micro Total Analysis System, 2003.
    [45]. B. Y. Kim, H. F. Luan and D. L. Kwong, “Ultra Thin (<3nm) High Quality Nitride/Oxide Stack Gate Dielectrics Fabricated by In-Situ Rapid Thermal Processing,” IEEE International Electron Devices Meeting (IEDM’97.), pp. 463-466, 1997.
    [46]. H. F. Luan, B. Z. Wu, L. G. Kang, B. Y. Kim, R. Vrtis, D. Robert and D. L. Kwong, “Ultra Thin High Quality Ta2O5 Gate Dielectric Prepared by In-situ Rapid Thermal Processing,” IEEE International Electron Devices Meeting (IEDM’98.), pp. 609-612, 1998.
    [47]. K. W. Kwon, C. S. Kang, S. O. Park, H. O. Kang and S. T. Ahn, “Thermally Robust Ta2O5 Capacitor for the 256-Mbit DRAM,” IEEE Trans. Electron Device, Vol. 43, No. 6, pp. 919-923, 1996.
    [48]. S. C. Sun and T. F. Chen, “Leakage Current Reduction in Chemical Vapor Deposition Ta2O5 Films by Rapid Thermal Annealing in N2O,” IEEE Electron Device Letter, Vol. 17, No. 7, pp. 355-357, 1996.
    [49]. Y. Matsui, K. Torii, M. Hirayama, Y. Fujisaki, S. Iijima and Y. Ohji, “Reduction of Current Leakage in Chemical Vapor Deposited Ta2O5 Thin-Films by Oxygen-Radical Annealing,” IEEE Electron Devices Letter., Vol. 17, No. 9, pp. 431-433, 1996.
    [50]. M. C. Wang, C. C. Tasi, K. M. Hung and N. C. Wu, “Preparation and Characterization of (Ba1-xSrx)(Ti0.9Sn0.1)O3 Thin Films Deposited on Pt/Ti/SiO2/Si Substrate by RF Magnetron Sputtering,” Journal of Crystal Growth, Vol. 241, pp. 439, 2002.
    [51]. S. Xing, Z. Song and C. Lin, “Optimized Deposition of PLD-Derived Ba0.8Sr0.2TiO3 Thin Film Capacitor,” Materials Letters, Vol. 54, pp. 447, 2002.
    [52]. E. Dien, J. B. Briot, M. Lejeune and A. Smith, “Relationship between Processing and Electrical Behavior of BST Films Deposited by Spin Coating,” Journal of the European Ceramic Society, Vol. 19, pp.1349, 1999.
    [53]. C. S. Hwang, S. O. Park, H. J. Cho, C. S. Kang, H. K. Kang, S. I. Lee and M. Y. Lee, “Deposition of Extremely Thin (Ba,Sr)TiO3 Thin Films for Ultra-Large-Scale Integrated Dynamic Random Access Memory Application,” Applied Physics Letters, Vol. 67, pp. 2819, 1995.
    [54]. Y. W. Chang and D. Y. Kwok, “Electrowetting on Dielectric: A Low Voltage Study on Self-Assembled Monolayers and Its Wetting Kinetics,” Proceedings of the 2004 International Conference on MEMS, NANO and Smart Systems (ICMENS’04), 2004.
    [55]. M. A. Northrup, C. Gonzalez, D. Hadley, R. F. Hills, P. Landre, S. Lehew, R. Saiki, J. J. Shinsky and R. Watson, “A MEMS-Based Miniature DNA Analysis System,” Transducers, Eurosensors IX, pp. 764-767, 1995.
    [56]. J. H. Daniel, S. Iqbal, R. B. Millington, D. E. Moorf, C. R. Lowe, D. I. Leslie, M. A. Lee and M. J. Pearce, “Silicon Microchamber for DNA Amplification,” Sensors and Actuators A, Vol. 71, pp. 81-88, 1998.
    [57]. Z. Zhan, C. Dafu, Y. Zhongyao and W. Li, “Biochip of PCR Amplification in Silicon,” The 1st Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology, pp. 12-14, 2000.
    [58]. J. Chiou, P. Matsurira, A. Sonin and D. J. Ehrlich, “Performance of a Closed-cycle Capillary Polymerase Chain Reaction Machine,” Micro Total Analysis System, pp. 495-496, 2001.
    [59]. A. J. deMello, “DNA Amplification Moves On,” Nature, Vol. 422, pp. 28, 2003.
    [60]. C. H. Luo, G. B. Lee, T. M. Hsieh, F. C. Huang, C. S. Liao, J. J. Wu and C. C. Chang, “A Portable Polymerase Chain Reaction Device by MEMS and Neural Network Technologies,” Asia-Pacific Conference of Transducerss and Micro-Nano Technology, Sapporo, Japan, 2004.
    [61]. U. C. Yi and C. J. Kim, “EWOD Actuation with Electrode-Free Cover Plate,” Transducers, Vol. 1, pp.89-92, 2005.
    [62]. 杜仲慶, ”二氧化矽粒子薄膜的製備及其表面潤溼性的探討,” 國立成功大學化學工程學系碩士論文, 94年6月.

    下載圖示 校內:2006-08-12公開
    校外:2006-08-12公開
    QR CODE