| 研究生: |
吳陽 Yang, Wu |
|---|---|
| 論文名稱: |
雙擺變曲率滑動隔震支承於雙向震波作用下之實驗與理論研究 An Experimental and Theoretical Study on Double Sliding Isolators with Variable Curvature under Bidirectional Ground Excitations |
| 指導教授: |
盧煉元
Lu, Lyan-Ywan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 250 |
| 中文關鍵詞: | 滑動隔震 、雙擺摩擦支承 、變曲率支承 、支承元件測試 、雙向震波 、摩擦子尺寸效應 、近域震波 、速度相依摩擦材 |
| 外文關鍵詞: | Sliding isolation, double pendulum isolator, variable curvature, near-fault earthquake, bidirectional ground motion, velocity-dependent friction coefficient, dimension effect |
| 相關次數: | 點閱:63 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今傳統滑動隔震支承(如:摩擦單擺支承)已廣泛的應用於實際建物當中,其對於一般震波有著不錯的隔震效果,但近年文獻亦顯示其在具有長週期成分的近域震波中容易造成似共振現象,因而降低隔震效果及增加隔震層風險。為了確保隔震建物在較大地震力或近域震波作用下之安全性,摩擦單擺支承尺寸通常較大,因而增加製造成本。有鑑於此,有學者提出雙擺變曲率滑動隔震支承(Double Sliding Isolator with Various Curvature,簡稱DSIVC)之構想。此類隔震支承是由兩個上下各自獨立的變曲率支承和一個中間摩擦子組成,相較於傳統FPS支承,DSIVC支承具有較多的靈活性和可變性,可避免降低近域震波中似共振顯現之發生,且在相同位移容量下可縮小尺寸,更為經濟。
本文針對雙擺變曲率滑動隔震支承進行一系列之理論及實驗研究,其中理論研究部分有:(1)、建立DSIVC支承元件在單向與雙向運動中之力與位移關係式(2)、探討DSIVC之摩擦子尺寸效應對單向運動力與位移關係之影響。(3)、建立DSIVC隔震結構在單向與雙向地震波作用之動力方程式與數值分析方法,而在實驗研究部分則有:(1)進行DSIVC支承單向與雙向往復運動下之元件測試。以驗證所建之元件力與位移關係式。(2)、利用前人的單擺變曲支承振動臺實驗資料,利用等效雙擺支承的概念驗證本文所建立之DSIVC隔震分析方法之正確性。本文研究結果顯示,本文所建立之DSIVC支承元件理論公式確可完整模擬在單向與雙向位運動下DSIVC支承之力學行為,經由前人之振動臺實驗資料,則可驗證本文動力分析方法在考慮雙向摩擦力耦合效應下確可模擬DSIVC隔震結構在雙向地震力下之行為。同時由數值模擬中亦可知,DSIVC能夠有效的改善FPS支承在近斷層震波作用下所產生之不良反應,以及在相同支承位移條件下DSIVC能夠有效的縮小單擺隔震支承之尺寸。
Traditional sliding bearings, e.g., friction pendulum system (FPS)isolator, have been widely used for seismic isolation of buildings. Nevertheless, recent literature also reveals that the isolator displacement of this type of isolation system is likely to be considerably amplified in a near-fault earthquake with long-period components. In order to ensure the safety of the isolated building under the sever near-fault earthquake, the size of sliding bearing has be increased, and thus the manufacturing cost is increased as well. In view of this, some scholars have proposed using double sliding isolators with variable curvature (DSIVCs). A typical DSIVC mainly consists of a slider, an upper and a lower sliding surface with variable curvature. Compared with a (FPS)isolator, the DSIVC possesses adaptive nature that helps reduce seismic responses under a near-field earthquake and requires smaller diameter with same isolator displacement capacity. These features make the DSIVC a more economical and efficient isolator.
Both theoretical and experimental studies on the DSIVC are carried out in this thesis. The theoretical study includes: (1) establish the force-displacement formula for the DSIVC in bidirectional motion. (2) Study the dimension effect of DSIVC's slider on the force-displacement relationship. (3) Establish the dynamic equation and numerical method for a DSIVC-isolated structure under bidirectional ground excitations. The experimental study includes: (1) Conduct the element test of the DSIVC under bidirectional motion, in order to verify the force-displacement formula. (2) Using the previous shaking table test data to validate the established analysis method for a DSIVC-isolated structure. The experimental results demonstrate that the DSIVC formula and analysis method established in this thesis is able to simulate the bidirectional mechanical behavior of the DSIVC device alone, and also able to capture the dynamic response of a DSIVC-isolated structure under bidirectional ground excitations.
1. Agrawal A. K., Xu Z., He W. L. (2006) “Ground motion pulse-based active control of a linear base-isolated benchmark building.” Structural Control & Health Monitoring, 13(2-3): 792-808.
2. Bao Y., Becker T. C., Hamaguchi H. (2017) “Failure of double friction pendulum bearings under pulse-type motions.” Earthquake Engineering & Structural Dynamics, 46: 715–732.
3. Chung L.L., Yang Y.C., Chen H.M., Lu L. Y. (2009) “Dynamic behavior of nonlinear rolling isolation system.” Structural Control and Health Monitoring, 16(1): 32-54.
4. Faramarz K and Montazar R (2010) “Seismic response of double concave friction pendulum base-isolated structures considering vertical component of earthquake.” Advances in Structural Engineering, 13:1-13.
5. Fenz D M and Constantinou M C (2006) “Behaviour of the double concave Friction Pendulum bearing.” Earthquake Engineering and Structural Dynamics Vol.35 1403-1424
6. Fenz D. M., Constantinou M. C. (2008a) “Spherical sliding isolation bearings with adaptive behavior: Theory.” Earthquake Engineering & Structural Dynamics, 37: 163–183.
7. Fenz D. M., Constantinou M. C. (2008b) ”Spherical sliding isolation bearings with adaptive behavior: Experimental verification.” Earthquake Engineering & Structural Dynamics, 37: 185–205.
8. Jangid R.S,(2004), “Optimum friction pendulum system for near-fault motions.” Engineering Structures,Vol.27,No.3,349-359
9. Krishnamoorthy A. (2011) “Variable curvature pendulum isolator and viscous fluid damper for seismic isolation of structures.” Journal of Vibration & Control, 17(12): 1779–1790.
10. Krishnamoorthy A. (2015) “Seismic Control of Continuous Bridges Using Variable Radius Friction Pendulum Systems and Viscous Fluid Dampers.” International Journal of Acoustics & Vibration, 20(1): 24-35.
11. Kim Y. S., Yun C. B. (2007) “Seismic response characteristics of bridges using double concave friction pendulum bearings with tri-linear behavior.” Engineering Structures, 29: 3082–3093.
12. Lee T. Y. and Kawashima K. (2005) “Control of seismic-excited nonlinear isolated bridges with variable viscous dampers.” Journal of Earthquake Engineering, JSCE, 28(114)
13. Lin P. Y., P. N. Roschke, C. H. Loh (2007) “Hybrid base-isolation with magnetorheological damper and fuzzy control.” Structural Control and Health Monitoring, 14(3): 384-405.
14. Lin T. K., Lu L. Y., Chang H. (2015) “Fuzzy logic control of a stiffness-adaptable seismic isolation system.” Structural Control and Health Monitoring, 22(1): 177-195.
15. Lu,L.Y., M.H.Shih, C.Y.Wu (2004), “Near-Fault Seismic Isolation Using Sliding Bearings with Variable Curvatures ,Proceedings of the 13th World Conference on Earthquake Engineering”, August 1-6, Vancouver, BC, Canada, Paper no. 3264.
16. Lu L. Y. and Lin G. L. (2009a) “A theoretical study on piezoelectric smart isolation system for seismic protection of equipment in near-fault areas” Journal of Intelligent Material Systems & Structures, 20(2): 217-232.
17. Lu L. Y. and Lin G. L. (2009b) “Improvement of near-fault seismic isolation using a resettable variable stiffness damper.” Engineering Structures, 31(9): 2097-2114.
18. Lu L. Y., Lin G. L., Lin C. C. (2011a) “Absolute-energy-based active control strategies for linear seismic isolation systems.” Structural Control & Health Monitoring, 18(3):321-40.
19. Lu L. Y., Lin G. L., C. Y. Lin (2011b) “Experimental verification of a piezoelectric smart isolation system.” Structural Control & Health Monitoring, 18(8): 869-889.
20. Lu, L. Y., T. Y. Lee, S. W. Yeh (2011c) “Theory and experimental study for sliding isolators with variable curvature” Earthquake Engineering and Structural Dynamics, Vol. 40, No. 14, 1609-1627.
21. Lu L. Y., Chu S. Y., Yeh S. W., Chung L. L. (2012) “Seismic test of least-input-energy control with ground velocity feedback for variable-stiffness isolation systems.” Journal of Sound and Vibration, 331(4): 767-784.
22. Lu L. Y., Hsu C. C. (2013a) “Experimental study of variable-frequency rocking bearings for seismic isolation.” Engineering Structures, 46(1): 116-129.
23. Lu, L. Y., T. Y. Lee, S. Y. Juang, S. W. Yeh (2013b) “Polynomial friction pendulum isolators (PFPIs) for building floor isolation: an experimental and theoretical study.” Engineering Structures, Vol. 56, 970-982
24. Murnal P. and Sinha R. (2002) “Earthquake Resistant Design of Structures using the Variable Frequency Pendulum Isolator.” Journal of Structural Engineering, 128(7): 870-880.
25. Murnal P. and Sinha R. (2004a) “Aseismic design of structure–equipment systems using variable frequency pendulum isolator.” Nuclear Engineering & Design, 231: 129–139.
26. Murnal P. and Sinha R. (2004b) “Behavior of Torsionally Coupled Structures with Variable Frequency Pendulum Isolator.” Journal of Structural Engineering, 130(7): 1041-1054.
27. Naeim, F. and J. M. Kelly (1999) “Design of Seismic Isolated Structures, Chapter 4.” John Wiley & Sons, Inc., New York.
28. Narasimhan, S. and S. Nagarajaiahb (2005) “A STFT semiactive controller for base isolated buildings with variable stiffness isolation systems.” Engineering Structures, Vol. 27, pp. 514-523.
29. Pranesh, M. and R. Sinha (2002) ,”Earthquake Resistant Design of Structures using the Variable Frequency Pendulum Isolator.”Journal of Structural Engineering, 128, 870.
30. Pranesh, M. and R. Sinha (2004a) “Behavior of Torsionally Coupled Structures with Variable Frequency Pendulum Isolator.”Journal of Structural Engineering, 130, 1041.
31. Pranesh,M. and R. Sinha (2004b) ”Aseismic design of structure-equipment systems using variable frequency pendulum isolator”, Nuclear Engineering and Design, v 231, n 2, June, 2004, p 129-139
32. Panchal V. R. and Jangid R. S. (2008a) “Variable friction pendulum system for near-fault ground motions.” Structural Control & Health Monitoring, 15: 568–584.
33. Panchal V. R. and Jangid R. S. (2008b) “Seismic behavior of variable frequency pendulum isolator.” Earthquake Engineering & Engineering Vibration, 7(2): 193-205.
34. Panchal V R and Jangid R S (2009) “Seismic Response of Structures with Variable Friction Pendulum System.” Journal of Earthquake Engineering Vol.13,No.2,193-216
35. Panchal V. R., Jangid R. S., Soni D. P., Mistry B. B. (2010) “Response of the double variable frequency pendulum isolator under triaxial ground excitations.” Journal of Earthquake Engineering, 14: 527–558.
36. Panchal V. R. and Jangid R. S. (2012) “Behaviour of liquid storage tanks with VCFPI under near-fault ground motions.” Structure & Infrastructure Engineering, 8(1): 70-88.
37. Ponzo F. C., Cesare A. D., Leccese G., Nigro D. (2017) ”Shake table testing on restoring capability of double concave friction pendulum seismic isolation systems.” Earthquake Engineering & Structural Dynamics.
38. Soni D. P., Mistry B. B., Panchal V.R. (2010) “Behaviour of asymmetric building with double variable frequency pendulum isolator.” Structural Engineering & Mechanics, 34(1): 61-84.
39. Soni D. P., Mistry B. B., Jangid R. S., Panchal V. R. (2011a) ”Seismic response of the double variable frequency pendulum isolator.” Structural Control & Health Monitoring, 18: 450-470.
40. Soni D. P., Mistry B. B., Panchal V. R. (2011b) “Double variable frequency pendulum isolator for seismic isolation of liquid storage tanks.” Nuclear Engineering & Design, 241: 700-713.
41. Tsai C. S., Chiang T. C., Chen B. J. (2003) “Finite element formulations and theoretical study for variable curvature friction pendulum system.” Engineering Structures, 25: 1719–1730.
42. Van Engelen N.C., Tait M.J., Konstantinidis D. (2012) “Horizontal behavior of stable unbonded fiber reinforced elastomeric isolators (SU-FREIs) with holes.” The 15th World Conference on Earthquake Engineering, Sept. 24 -28, Lisbon, Portugal.
43. Victor A. Z., Stanley L. (2000) ”Seismic Isolation for Strong ,Near-field Earthquake Motions” The 12th World Conference on Earthquake Engineering, No.0088.
44. Wang, Y. P. and W. H. Liao (2000) ”Dynamic analysis of sliding structures with unsynchronized support motion,” Earthquake Engineering and Structural Dynamics, 29, 297-313
45. Yang, Y. B., L.Y.Lu, J. D. Yau (2005) “Chapter 22: Structure and Equipment Isolation.”Vibration and Shock Handbook,edited by C. W. de Silva, CRC Press, Taylor & Francis Group
46. 盧煉元、鍾立來(1999) “國內外結構控制技術之進展”,土木技術(防災科技專題),四月號,第14期,81-95頁。
47. 盧煉元、施明祥、張婉妮(2003)“近斷層震波對滑動式隔震結構之影響評估”結構工程,十二月刊。
48. 盧煉元、施明祥、吳政彥(2004) “變曲率滑動隔震支承之遲滯行為理論與實驗研究”,第七屆結構工程研討會,桃園大溪,8月22-24日,論文編號:H19。
49. 盧煉元、施明祥、曾旭玟、吳政彥(2005a) “滑動隔震支承之研發與其受近斷層震波行為之實驗探討”,結構工程,第二十卷,第三期,29-59頁。
50. 蔡崇興、唐超倫、江子政 (2009) “足尺度鋼構架加裝複擺隔震器之地震模擬振動台試驗” 建築結構,39: 611-616.
51. 盧煉元、吳政彥、葉弈麟 (2009) “圓錐形摩擦單擺支承之隔震應用研究”,結構工程,二十四卷,第二期,91-116頁。(NSC 94-2625-Z-327-004)
52. 趙陽、翁大根、任曉崧、張瑞甫 (2012) “複摩擦擺支座應用於樓面隔震研究” 結構工程師,28(1): 73-81.
53. 周雲,鄧雪松,龔健(2012)“變曲率摩擦複擺隔震支承的簡化分析與數值仿真”工程力學,29(7):163-185
54. 吳政彥 (2004), “變曲率滑動隔震結構之實驗與分析” 高雄第一科技大學營建工程系碩士論文,7月,指導教授:盧煉元
55. 王健 (2006), “變曲率滑動隔震防制近斷層震波之實驗與分析” 高雄第一科技大學營建工程系碩士論文,7月,指導教授:盧煉元
56. 范揚志(2015) “黏滯型隔震系統之隔震阻尼比最佳化設計公式及雙向變曲率型摩擦隔震系統理論與實驗研究”國立臺灣大學工學院土木工程學系,7月,指導教授:鍾立來
57. 蔡諄昶 (2015), “具摩擦可變特性之滑動隔震系統於垂直震波作用下之實驗與分析” 高雄第一科技大學營建工程系碩士論文,7月,指導教授:盧煉元
58. 王亮偉 (2016), “變曲率滑動隔震系統於三維震波作用下之實驗與理論研究” 國立成功大學碩士論文,7月,指導教授:盧煉元