簡易檢索 / 詳目顯示

研究生: 蔡雅閔
Tsai, Ya-Min
論文名稱: 台灣白花蝴蝶蘭的第一與第十七遺傳連鎖群在蘭嶼姬蝴蝶蘭染色體上的共線性
Colinearity of genetic linkage groups 1 and 17 of Phalaenopsis aphrodite subsp. formosana on chromosomes of Phalaenopsis equestris
指導教授: 張松彬
Chang, Song-Bin
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 65
中文關鍵詞: 台灣白花蝴蝶蘭蘭嶼姬蝴蝶蘭螢光原位雜合共線性粗絲期染色體染色體圖譜
外文關鍵詞: P. aphrodite, P. equestris, Fluorescent in situ hybridization (FISH), Colinearity, Pachytene chromosome, chromosome map
相關次數: 點閱:121下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 蘭科(Orchidaceae)為開花植物中最大的一科,包含25,000個以上的物種遍佈全球。其中蝴蝶蘭屬(Phalaenopsis)為全球園藝市場中非常受歡迎且具高經濟價值的觀賞植物,而系統性育種是有效率與永續地發展蘭花產業最重要的基礎。蝴蝶蘭基因組研究能有助於系統性育種,其中遺傳連鎖圖譜和染色體核型分析等細胞遺傳研究在育種中扮演相當重要的角色,但目前蝴蝶蘭的細胞遺傳相關研究依然相當缺乏。本研究使用高解析度的粗絲期(pachytene)染色體為材料,利用螢光原位雜合(fluorescent in situ hybridization, FISH)技術分析台灣白花蝴蝶蘭(Phalaenopsis aphrodite subsp. formosana)染色體圖譜的第一與第十七遺傳連鎖群(genetic linkage groups)與基因序列在蘭嶼姬蝴蝶蘭(Phalaenopsis equestris)染色體上的分布,並將兩種原生蝴蝶蘭的染色體圖譜做比較性核型分析。根據定位結果顯示,第十七遺傳連鎖群與PEPC基因位於台灣白花蝴蝶蘭第十二對染色體,而位於蘭嶼姬蝴蝶蘭第七對染體上;第一遺傳連鎖群與45S rDNA位於台灣白花蝴蝶蘭第十六對染色體,位於蘭嶼姬蝴蝶蘭第十三對染色體上。經比較性核型分析結果顯示PEPC基因、45S rDNA與兩個台灣白花蝴蝶蘭的遺傳連鎖群在蘭嶼姬蝴蝶蘭上皆具共線性(Colinearity)。經由兩種台灣原生種蝴蝶蘭的染色體圖譜比較性核型分析,除了可以了解染色體的重組與演化,增進蝴蝶蘭的基因體細胞遺傳學研究,且可加速以這二種蝴蝶蘭為親本的新雜交品種分子育種。

    Orchidaceae is one of the largest families in angiosperms, and more than 25,000 species have been found around the world. Phalaenopsis hybrids are the popular and high-value commodity in the global horticulture market. Systematic breeding is the essential base for efficient and sustainable development of Phalaenopsis hybrids. Consequently, the developments of genome studies will facilitate systematic breeding for Phalaenopsis and genetic linkage map and chromosome karyotyping are the crucial part for their breeding program. To date, the cytogenetic characterization of Phalaenopsis genome is still limited. Here, we integrate two genetic linkage groups of P. aphrodite and genes to pachytene chromosomes of P. equestris by fluorescent in situ hybridization (FISH) mapping. We also analyzed comparative karyotype based on the results of FISH mapping of P. aphrodite and P. equestris. Our results showed D_L17 and phosphoenolpyruvate carboxylase gene (PEPC) are located on chromosome 12 of P. aphrodite and chromosome 7 of P. equestris. Also, we discovered 45S rDNA and D_L1 were mapped on chromosome 16 of P. aphrodite and chromosome 13 of P. equestris. Overall, we found the consistent orientation and arrangement of our selected markers on these chromosomes between P. aphrodite and P. equestris. Our data provided a benefit for future cytogenetic and chromosomal rearrangement and evolutionary studies in orchids and facilitate in systematic breeding for the new hybrids using these two Phalaenopsis parents.

    摘要............................ ................I Abstract.......................................II 致謝...........................................III Index..........................................IV List of Table..................................VI List of Figure................................VII Chapter 1 Introduction..........................1 1.1 Phalaenopsis orchids........................1 1.2 Cytogenetics in plant genomics..............1 1.2.1 Application of Cytogenetics in plant......1 1.2.2 Fluorescence in situ hybridization (FISH).2 1.2.3 Comparative FISH mapping..................3 1.2.4 The resolution of FISH signal.............5 1.2.5 Previous cytogenetic studies in orchids...6 1.3 Previous cytogenetic and genetic studies in Phalaenopsis....................................6 1.4 Purpose.....................................8 Chapter 2 Materials and Methods................10 2.1 Plant materials............................10 2.2 Pachytene chromosome preparation...........10 2.2.1 Chromosome stage of pollen mother cells (PMCs) examination....................................10 2.2.2 Preparation of acid-clean slides.........10 2.2.3 Prepare chromosome spread by drop method.11 2.3 DNA of probe isolation.....................12 2.3.1 Plasmid DNA extraction...................12 2.3.2 Bacterial artificial chromosome (BAC) DNA extraction.....................................12 2.3.3 BAC DNA purification.....................13 2.3.4 Evaluation of BAC DNA quality............14 2.3.5 Probe labeling by nick translation.......14 2.3.6 Probe quantification (dot blotting)......15 2.4 Fluorescence in situ hybridization (FISH)..15 2.5 Cytological measurements and analysis......17 Chapter 3 Results..............................18 3.1 Comparative mapping of PEPC and D_L17 scaffolds between P. aphrodite and P. equestris..........18 3.1.1 FISH mapping of PEPC and D_L17 on chromosome 12 in P. aphrodite...................................18 3.1.2 FISH mapping of PEPC and D_L17 on chromosome 7 in P. equestris...................................19 3.1.3 Colinearity of PEPC and D_L17 between P. aphrodite and P. equestris...............................20 3.2 Comparative mapping of 45S rDNA and BACs of D_L01 between P. aphrodite and P. equestris..........21 3.2.1 FISH mapping of 45S and three BACs of D_L1 on chromosome 16 in P. aphrodite..................21 3.2.2 FISH mapping of 45S and BACs of D_L01 on chromosome 13 in P. equestris.............................22 3.2.3 Colinearity of 45S and BACs of D_L01 between P. aphrodite and P. equestris.....................23 Chapter 4 Discussion...........................25 4.1 The analysis of chromosome karyotyping between P. aphrodite and P. equesris......................25 4.2 Colinearity and rearrangements between P. aphrodite and P. equestris...............................25 4.3 The dispersed repeats of BAC-FISH results in P. equestris......................................26 4.4 Conclusion.................................27 Chapter 5 Reference............................29 Chapter 6 Tables...............................35 Chapter 7 Figures..............................46 Appendix 1 FISH mapping of PEPC, scaffold_545 and scaffold_959 on the chromosomes in P. aphrodite 60 Appendix 2 The cytogenetic order of PEPC and D_L17 in P. aphrodite......................................61 Appendix 3 The draft karyotype of P. aphrodite.62 Appendix 4 The published karyotype of P. equestris ...............................................63 Appendix 5 FISH mapping of 45S and BACs of D_L01 on the chromosomes in P. aphrodite....................64 Appendix 6 The cytogenetic order of PEPC and BACs of D_L01 in P. aphrodite..........................65

    陳文輝 (2002)。蝴蝶蘭的品種改良。科學發展。351:32-39
    李益豪 (2007)。核醣體RNA基因於七種蝴蝶蘭屬植物的分佈。國立台灣大學分子與細胞生物學研究所論文
    薛豪彥 (2012)。蘭嶼姬蝴蝶蘭粗絲期染色體螢光原位雜交與核型分析。國立台灣大學農藝學研究所論文
    葉志新 (2014)。台灣阿嬤-台灣白花蝴蝶蘭的故事。桃園區農業專訊。88: 3-5

    Aert, R., L. Sági, and G. Volckaert. 2004. Gene content and density in banana (Musa acuminata) as revealed by genomic sequencing of BAC clones. Theoretical and applied genetics. 109:129-139.
    Cabral, J.S., L.P. Felix, and M. Guerra. 2006. Heterochromatin diversity and its co-localization with 5S and 45S rDNA sites in chromosomes of four Maxillaria species (Orchidaceae). Genetics and Molecular Biology. 29:659-664.
    Cai, J., X. Liu, K. Vanneste, S. Proost, W.-C. Tsai, K.-W. Liu, L.-J. Chen, Y. He, Q. Xu, and C. Bian. 2015. The genome sequence of the orchid Phalaenopsis equestris. Nature genetics. 47:65-72.
    Chang, C.C., H.C. Lin, I.P. Lin, T.Y. Chow, H.H. Chen, W.H. Chen, C.H. Cheng, C.Y. Lin, S.M. Liu, C.C. Chang, and S.M. Chaw. 2006. The chloroplast genome of Phalaenopsis aphrodite (Orchidaceae): comparative analysis of evolutionary rate with that of grasses and its phylogenetic implications. Molecular biology and evolution. 23:279-291.
    Chen, C., C. Chen, F. Hsu, C. Wang, J. Yang, and Y. Kao. 2000. The pachytene chromosomes of maize as revealed by fluorescence in situ hybridization with repetitive DNA sequences. Theoretical and Applied Genetics. 101:30-36.
    Cheng, Z., C.R. Buell, R.A. Wing, and J. Jiang. 2002. Resolution of fluorescence in-situ hybridization mapping on rice mitotic prometaphase chromosomes, meiotic pachytene chromosomes and extended DNA fibers. Chromosome Research. 10:379-387.
    Christenson, E.A. 2001. Phalaenopsis: a monograph. Portland, Or.: Timber Press 330p., 62p. of col. plates.-illus.. ISBN. 881924946.
    D’emerico, S., I. Galasso, D. Pignone, and A. Scrugli. 2001. Localization of rDNA loci by fluorescent in situ hybridization in some wild orchids from Italy (Orchidaceae). Caryologia. 54:31-36.
    Danilova, T.V., B. Friebe, and B.S. Gill. 2012. Single-copy gene fluorescence in situ hybridization and genome analysis: Acc-2 loci mark evolutionary chromosomal rearrangements in wheat. Chromosoma. 121:597-611.
    De Jong, J.H., P. Fransz, and P. Zabel. 1999. High resolution FISH in plants–techniques and applications. Trends in plant science. 4:258-263.
    Fransz, P.F., C. Alonso‐Blanco, T.B. Liharska, A.J. Peeters, P. Zabel, and J.H. Jong. 1996. High‐resolution physical mapping in Arabidopsis thaliana and tomato by fluorescence in situ hybridization to extended DNA fibres. The Plant Journal. 9:421-430.
    He, Q., Z. Cai, T. Hu, H. Liu, C. Bao, W. Mao, and W. Jin. 2015. Repetitive sequence analysis and karyotyping reveals centromere-associated DNA sequences in radish (Raphanus sativus L.). BMC plant biology. 15:1.
    Heslop-Harrison, J. 2000a. Comparative genome organization in plants: from sequence and markers to chromatin and chromosomes. The Plant cell. 12:617-635.
    Heslop-Harrison, J. 2000b. RNA, genes, genomes and chromosomes: repetitive DNA sequences in plants. In Chromosomes Today. Springer. 45-56.
    Hřibová, E., M. Doleželová, and J. Doležel. 2008. Localization of BAC clones on mitotic chromosomes of Musa acuminata using fluorescence in situ hybridization. Biologia Plantarum. 52:445-452.
    Hsiao, Y.Y., Z.J. Pan, C.C. Hsu, Y.P. Yang, Y.C. Hsu, Y.C. Chuang, H.H. Shih, W.H. Chen, W.C. Tsai, and H.H. Chen. 2011. Research on orchid biology and biotechnology. Plant & cell physiology. 52:1467-1486.
    Hsu, C.-C., Y.-L. Chung, T.-C. Chen, Y.-L. Lee, Y.-T. Kuo, W.-C. Tsai, Y.-Y. Hsiao, Y.-W. Chen, W.-L. Wu, and H.-H. Chen. 2011. An overview of the Phalaenopsis orchid genome through BAC end sequence analysis. BMC plant biology. 11:1.
    Huang, S., R. Li, Z. Zhang, L. Li, X. Gu, W. Fan, W.J. Lucas, X. Wang, B. Xie, and P. Ni. 2009. The genome of the cucumber, Cucumis sativus L. Nature genetics. 41:1275-1281.
    Iovene, M., P.F. Cavagnaro, D. Senalik, C.R. Buell, J. Jiang, and P.W. Simon. 2011. Comparative FISH mapping of Daucus species (Apiaceae family). Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology. 19:493-506.
    Iovene, M., S.M. Wielgus, P.W. Simon, C.R. Buell, and J. Jiang. 2008. Chromatin structure and physical mapping of chromosome 6 of potato and comparative analyses with tomato. Genetics. 180:1307-1317.
    Iovene, M., Q. Yu, R. Ming, and J. Jiang. 2015. Evidence for emergence of sex-determining gene (s) in a centromeric region in Vasconcellea parviflora. Genetics. 199:413-421.
    Iwata-Otsubo, A., B. Radke, S. Findley, B. Abernathy, C.E. Vallejos, and S.A. Jackson. 2016. Fluorescence In Situ Hybridization (FISH)-Based Karyotyping Reveals Rapid Evolution of Centromeric and Subtelomeric Repeats in Common Bean (Phaseolus vulgaris) and Relatives. G3: Genes| Genomes| Genetics. 6:1013-1022.
    Jackson, S.A., Z. Cheng, M.L. Wang, H.M. Goodman, and J. Jiang. 2000. Comparative fluorescence in situ hybridization mapping of a 431-kb Arabidopsis thaliana bacterial artificial chromosome contig reveals the role of chromosomal duplications in the expansion of the Brassica rapa genome. Genetics. 156:833-838.
    Janda, J., J. Šafář, M. Kubaláková, J. Bartoš, P. Kovářová, P. Suchánková, S. Pateyron, J. Číhalíková, P. Sourdille, and H. Šimková. 2006. Advanced resources for plant genomics: a BAC library specific for the short arm of wheat chromosome 1B. The Plant Journal. 47:977-986.
    Jheng, C.F., T.C. Chen, J.Y. Lin, T.C. Chen, W.L. Wu, and C.C. Chang. 2012. The comparative chloroplast genomic analysis of photosynthetic orchids and developing DNA markers to distinguish Phalaenopsis orchids. Plant science : an international journal of experimental plant biology. 190:62-73.
    Jiang, J., and B.S. Gill. 2006. Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome / National Research Council Canada = Genome / Conseil national de recherches Canada. 49:1057-1068.
    Kao, Y.-Y., S.-B. Chang, T.-Y. Lin, C.-H. Hsieh, Y.-H. Chen, W.-H. Chen, and C.-C. Chen. 2001. Differential accumulation of heterochromatin as a cause for karyotype variation in Phalaenopsis orchids. Annals of Botany. 87:387-395.
    Karafiátová, M., J. Bartoš, D. Kopecký, L. Ma, K. Sato, A. Houben, N. Stein, and J. Doležel. 2013. Mapping nonrecombining regions in barley using multicolor FISH. Chromosome Research. 21:739-751.
    Kirov, I.V., K. Van Laere, and L.I. Khrustaleva. 2015. High resolution physical mapping of single gene fragments on pachytene chromosome 4 and 7 of Rosa. BMC genetics. 16:1.
    Komuro, S., R. Endo, K. Shikata, A. Kato, and G. Scoles. 2013. Genomic and chromosomal distribution patterns of various repeated DNA sequences in wheat revealed by a fluorescence in situ hybridization procedure. Genome / National Research Council Canada = Genome / Conseil national de recherches Canada. 56:131-137.
    Koo, D.-H., Y.-W. Nam, D. Choi, J.-W. Bang, H. De Jong, and Y. Hur. 2010. Molecular cytogenetic mapping of Cucumis sativus and C. melo using highly repetitive DNA sequences. Chromosome research. 18:325-336.
    Lee, Y.-I., and M.-C. Chung. 2008. Identification of genome relationships among Paphiopedilum species by genomic and fluorescent in situ hybridization. Acta Horticulturae. 766:331-334.
    Lin, C.-C., Y.-H. Chen, W.-H. Chen, C.-C. Chen, and Y.-Y. Kao. 2005. Genome organization and relationships of Phalaenopsis orchids inferred from genomic in situ hybridization. Botanical Bulletin of Academia Sinica. 46.
    Lin, S., H.-C. Lee, W.-H. Chen, C.-C. Chen, Y.-Y. Kao, Y.-M. Fu, Y.-H. Chen, and T.-Y. Lin. 2001. Nuclear DNA contents of Phalaenopsis sp. and Doritis pulcherrima. Journal of the American Society for Horticultural Science. 126:195-199.
    Lou, Q., M. Iovene, D.M. Spooner, C.R. Buell, and J. Jiang. 2010. Evolution of chromosome 6 of Solanum species revealed by comparative fluorescence in situ hybridization mapping. Chromosoma. 119:435-442.
    Lysak, M.A., A. Berr, A. Pecinka, R. Schmidt, K. McBreen, and I. Schubert. 2006. Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proceedings of the National Academy of Sciences of the United States of America. 103:5224-5229.
    Moscone, E.A., R. Samuel, T. Schwarzacher, D. Schweizer, and A. Pedrosa-Harand. 2007. Complex rearrangements are involved in Cephalanthera (Orchidaceae) chromosome evolution. Chromosome Research. 15:931-943.
    Murata, M., J. Heslop‐Harrison, and F. Motoyoshi. 1997. Physical mapping of the 5S ribosomal RNA genes in Arabidopsis thaliana by multi‐color fluorescence in situ hybridization with cosmid clones. The Plant Journal. 12:31-37.
    Ohmido, N., K. Fukui, and T. Kinoshita. 2010. Recent advances in rice genome and chromosome structure research by fluorescence in situ hybridization (FISH). Proceedings of the Japan Academy, Series B. 86:103-116.
    Raven, P.H. 1975. The bases of angiosperm phylogeny: cytology. Annals of the Missouri Botanical Garden:724-764.
    Šafář, J., J.C. Noa-Carrazana, J. Vrána, J. Bartoš, O. Alkhimova, X. Sabau, H. Šimková, F. Lheureux, M.-L. Caruana, and J. Doležel. 2004. Creation of a BAC resource to study the structure and evolution of the banana (Musa balbisiana) genome. Genome / National Research Council Canada = Genome / Conseil national de recherches Canada. 47:1182-1191.
    Sharma, S.K., J. Dkhar, S. Kumaria, P. Tandon, and S.R. Rao. 2012. Assessment of phylogenetic inter-relationships in the genus Cymbidium (Orchidaceae) based on internal transcribed spacer region of rDNA. Gene. 495:10-15.
    Shearer, L.A., L.K. Anderson, H. de Jong, S. Smit, J.L. Goicoechea, B.A. Roe, A. Hua, J.J. Giovannoni, and S.M. Stack. 2014. Fluorescence in situ hybridization and optical mapping to correct scaffold arrangement in the tomato genome. G3: Genes| Genomes| Genetics. 4:1395-1405.
    Shindo, K., and H. Kamemoto. 1963. Karyotype analysis of some species of Phalaenopsis. Cytologia. 28:390-398.
    Stace, C.A. 2000. Cytology and cytogenetics as a fundamental taxonomic resource for the 20th and 21st centuries. Taxon:451-477.
    Sun, J., Z. Zhang, X. Zong, S. Huang, Z. Li, and Y. Han. 2013. A high-resolution cucumber cytogenetic map integrated with the genome assembly. BMC genomics. 14:461.
    Tönnies, H. 2002. Modern molecular cytogenetic techniques in genetic diagnostics. Trends in molecular medicine. 8:246-250.
    Tang, X., D. Szinay, C. Lang, M.S. Ramanna, E.A. van der Vossen, E. Datema, R.K. Lankhorst, J. de Boer, S.A. Peters, and C. Bachem. 2008. Cross-species bacterial artificial chromosome–fluorescence in situ hybridization painting of the tomato and potato chromosome 6 reveals undescribed chromosomal rearrangements. Genetics. 180:1319-1328.
    Trask, B.J. 1991. Fluorescence in situ hybridization: applications in cytogenetics and gene mapping. Trends in Genetics. 7:149-154.
    Tsai, C., S. Huang, and C. Chou. 2005. Molecular phylogeny of Phalaenopsis Blume (Orchidaceae) based on the internal transcribed spacer of the nuclear ribosomal DNA. Plant Systematics and Evolution. 256:1-16.
    Valárik, M., H. Šimková, E. Hřibová, J. Šafář, M. Doleželová, and J. Doležel. 2002. Isolation, characterization and chromosome localization of repetitive DNA sequences in bananas (Musa spp.). Chromosome Research. 10:89-100.
    Vilarinhos, A., P. Piffanelli, P. Lagoda, S. Thibivilliers, X. Sabau, F. Carreel, and A. D'hont. 2003. Construction and characterization of a bacterial artificial chromosome library of banana (Musa acuminata Colla). Theoretical and Applied Genetics. 106:1102-1106.
    Wang, C.J., L. Harper, and W.Z. Cande. 2006. High-resolution single-copy gene fluorescence in situ hybridization and its use in the construction of a cytogenetic map of maize chromosome 9. The Plant cell. 18:529-544.
    Zhang, P., W. Li, J. Fellers, B. Friebe, and B.S. Gill. 2004. BAC-FISH in wheat identifies chromosome landmarks consisting of different types of transposable elements. Chromosoma. 112:288-299.
    Zhang, W., C.M. Wai, R. Ming, Q. Yu, and J. Jiang. 2010. Integration of genetic and cytological maps and development of a pachytene chromosome-based karyotype in papaya. Tropical plant biology. 3:166-170.
    Zhang, Y., C. Cheng, J. Li, S. Yang, Y. Wang, Z. Li, J. Chen, and Q. Lou. 2015. Chromosomal structures and repetitive sequences divergence in Cucumis species revealed by comparative cytogenetic mapping. BMC genomics. 16:1.
    Ziolkowski, P.A., and J. Sadowski. 2002. FISH-mapping of rDNAs and Arabidopsis BACs on pachytene complements of selected Brassicas. Genome / National Research Council Canada = Genome / Conseil national de recherches Canada. 45:189-197.

    下載圖示 校內:2021-07-01公開
    校外:2021-07-01公開
    QR CODE