簡易檢索 / 詳目顯示

研究生: 林弘
Lin, Hung
論文名稱: 探討空氣污染與可步行性之空間關聯現象-以舊台南市為例
The Spatial Correlation between Air Pollution and Walkability in Tainan
指導教授: 趙子元
Chao, Tzu-Yuan
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 都市計劃學系
Department of Urban Planning
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 81
中文關鍵詞: 建成環境可步行性空氣污染社經脆弱度雙變數空間自相關
外文關鍵詞: Built environment walkability, air pollution, socioeconomic vulnerability, bivariate LISA statistic
相關次數: 點閱:118下載:24
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著都市永續發展的概念興起,可步行性和人本交通透過其對於環境、經濟和社會永續性的實踐,日益成為當代都市規劃的核心項目。都市中建成環境的規劃設計與開發,可能影響地區環境之可步行性和空氣污染現象之分布情形,導致地區之空間步行者直接或間接暴露於空氣污染中。於既有探討建成環境可步行性之國內外相關研究中,鮮少討論都市中建成環境可步行性特徵與空氣污染濃度之空間相關性和聚集現象,因此空間規劃專業對於建成環境可步行性與空污暴露情形於空間中的現象及兩者間關聯性的了解仍是模糊的。除了地區可步行性之空污暴露,區域中之人群因其面對空氣污染物之易感性和調適能力差異,影響著地區之脆弱度特質從而可能導致較嚴重的健康風險。據此,本研究之研究目的有四: (一) 瞭解細懸浮微粒分布之時空變化特徵;(二) 探討建成環境可步行性特徵與空氣污染濃度之相關性及空間關聯現象; (三) 檢視區域社經脆弱度與各樣態之空污步行區域分布情形;(四) 針對空氣污染濃度和建成環境可步行性之空間現象提出策略建議。
    本研究以舊台南市為實證地區,並將研究架構分為三部分。首先,以克利金法和空間自相關分析之PM2.5濃度時空分布特性結果進行討論。其次,透過主成分分析分析建成環境可步行性組成特徵,並利用雙變數空間自相關討論空污與可步行性之建成環境特性之空間關聯特性。最後,結合地區之空污社經脆弱空間分布,掌握實證地區之空污步行環境與社經脆弱度之空間暴露情形。
    根據研究結果,舊台南市內的三個PM2.5濃度高鋒時段皆具高度的空間聚集現象。空氣污染濃度與建成環境可步行性部分,顯示整體可步行性與三個空氣污染濃度高峰時段之平均濃度呈現中度正相關,且中午時段之相關性最高;建成環境可步行性特徵與空污濃度透過相關性和空間相關性分析,皆呈現顯著的低度之正向相關性,相關性由高至低依序為鄰里生活機能、商業服務水準和步行設施條件,其局部高值空間群聚地區則於區域中呈現相異的空間分布特性。研究結果顯示年齡脆弱度高之村里,約有高過三分之一之比例處於較高的建成環境可步行性地區,但伴隨相對高值之空氣污染濃度現象。
    透過本研究成果,規劃者進一步掌握空氣污染與建成環境可步行性之局部時空聚散現象,以及與地區脆弱度之分布情形,可作為未來步行環境之建置或改善規劃設計與於不同空污環境暴露空間之規劃策略參考。

    With the rise of the concept of urban sustainability, walkability has increasingly become a core item of urban planning through its environmental, economic, and social sustainability. The planning and design of the built environment in existing cities may simultaneously affect the walkability of the area and cause environmental exposures such as air pollution, exposing the residents of the area to air pollution. In the current domestic research, the phenomenon of walkability and air pollution exposure in space and the relationship between the two are still vague. Therefore, this study explores the spatial correlation of built-environment characteristics of walkability and air pollution concentrations in urban areas. And further explore the spatial distribution of socioeconomic vulnerability, air pollution, and walkability.

    第一章 緒論1 第一節 研究動機 1 第二節 研究目的 3 第三節 研究流程 4 第四節 名詞定義 5 第二章 文獻回顧 6 第一節 可步行性與建成環境 6 第二節 空氣污染現象與影響 12 第三節 空氣污染與可步行性 20 第四節 小結 26 第三章 研究方法與設計 27 第一節 研究架構 27 第二節 研究和實證範圍 28 第三節 研究資料建置 29 第四節 研究方法 37 第四章 實證分析 41 第一節 細懸浮微粒空間分布現象與趨勢分析 41 第二節 可步行性暴露於空污之空間型態 45 第三節 空污與可步行性環境之暴露與社經脆弱度分布現象 58 第四節 綜合討論 64 第五章 結論與建議 67 第一節 結論 67 第二節 研究限制 69 第三節 建議 69 參考文獻 71

    Adhikari, B., Delgado-Ron, J. A., Van den Bosch, M., Dummer, T., Hong, A., Sandhu, J., . . . Frank, L. D. (2021). Community design and hypertension: Walkability and park access relationships with cardiovascular health. International Journal of Hygiene and Environmental Health, 237, 113820. doi: https://doi.org/10.1016/j.ijheh.2021.113820
    Adkins, A., Makarewicz, C., Scanze, M., Ingram, M., & Luhr, G. (2017). Contextualizing Walkability: Do Relationships Between Built Environments and Walking Vary by Socioeconomic Context? Journal of the American Planning Association, 83(3), 296-314. doi: 10.1080/01944363.2017.1322527
    Aghaabbasi, M., Moeinaddini, M., Zaly Shah, M., Asadi-Shekari, Z., & Arjomand Kermani, M. (2018). Evaluating the capability of walkability audit tools for assessing sidewalks. Sustainable Cities and Society, 37, 475-484. doi: https://doi.org/10.1016/j.scs.2017.12.001
    Ainsworth, B. E., Haskell, W. L., Whitt, M. C., Irwin, M. L., Swartz, A. M., Strath, S. J., . . . Emplaincourt, P. O. (2000). Compendium of physical activities: an update of activity codes and MET intensities. Medicine and science in sports and exercise, 32(9; SUPP/1), S498-S504.
    An, D., Tong, X., Liu, K., & Chan, E. H. W. (2019). Understanding the impact of built environment on metro ridership using open source in Shanghai. Cities, 93, 177-187. doi: https://doi.org/10.1016/j.cities.2019.05.013
    Anselin, L. (2010). Local Indicators of Spatial Association-LISA. Geographical Analysis, 27(2), 93-115. doi: 10.1111/j.1538-4632.1995.tb00338.x
    Araki, S., Hasunuma, H., Yamamoto, K., Shima, M., Michikawa, T., Nitta, H., . . . Japan Environm Childrens Study, G. (2021). Estimating monthly concentrations of ambient key air pollutants in Japan during 2010-2015 for a national-scale birth cohort. Environmental Pollution, 284, 9. doi: 10.1016/j.envpol.2021.117483
    Artmann, M., Kohler, M., Meinel, G., Gan, J., & Ioja, I.-C. (2019). How smart growth and green infrastructure can mutually support each other — A conceptual framework for compact and green cities. Ecological Indicators, 96, 10-22. doi: https://doi.org/10.1016/j.ecolind.2017.07.001
    Baobeid, A., Koc, M., & Al-Ghamdi, S. G. (2021). Walkability and Its Relationships With Health, Sustainability, and Livability: Elements of Physical Environment and Evaluation Frameworks. Frontiers in Built Environment, 7. doi: 10.3389/fbuil.2021.721218
    Bell, M. L., Zanobetti, A., & Dominici, F. (2013). Evidence on Vulnerability and Susceptibility to Health Risks Associated With Short-Term Exposure to Particulate Matter: A Systematic Review and Meta-Analysis. American Journal of Epidemiology, 178(6), 865-876. doi: 10.1093/aje/kwt090
    Bennett, W. D., & Zeman, K. L. (2004). Effect of body size on breathing pattern and fine-particle deposition in children. Journal of Applied Physiology, 97(3), 821-826.
    Berke, E. M., Gottlieb, L. M., Moudon, A. V., & Larson, E. B. (2007). Protective association between neighborhood walkability and depression in older men. Journal of the American Geriatrics Society, 55(4), 526-533. doi: 10.1111/j.1532-5415.2007.01108.x
    Bhadra, S., Sazid, A. K. M. T., & Esraz-Ul-Zannat, M. (2015, 11-11 Sept. 2015). An objective assessment of walkability in Khulna City: A GIS based approach. Paper presented at the 2015 3rd International Conference on Green Energy and Technology (ICGET).
    Blanco, H., Alberti, M., Forsyth, A., Krizek, K. J., Rodríguez, D. A., Talen, E., & Ellis, C. (2009). Hot, congested, crowded and diverse: Emerging research agendas in planning. Progress in Planning, 71(4), 153-205. doi: https://doi.org/10.1016/j.progress.2009.03.001
    Bongiorno, C., Santucci, D., Kon, F., Santi, P., & Ratti, C. (2019). Comparing bicycling and pedestrian mobility: Patterns of non-motorized human mobility in Greater Boston. Journal of Transport Geography, 80, 102501. doi: https://doi.org/10.1016/j.jtrangeo.2019.102501
    Briggs, D. J., Collins, S., Elliott, P., Fischer, P., Kingham, S., Lebret, E., . . . Van Der Veen, A. (1997). Mapping urban air pollution using GIS: a regression-based approach. International Journal of Geographical Information Science, 11(7), 699-718. doi: 10.1080/136588197242158
    Briggs, D. J., de Hoogh, K., Morris, C., & Gulliver, J. (2008). Effects of travel mode on exposures to particulate air pollution. Environment International, 34(1), 12-22. doi: https://doi.org/10.1016/j.envint.2007.06.011
    Burchell, R. W., & Mukherji, S. (2003). Conventional development versus managed growth: the costs of sprawl. American journal of public health, 93(9), 1534-1540. doi: 10.2105/ajph.93.9.1534
    Cerin, E., Saelens, B. E., Sallis, J. F., & Frank, L. D. (2006). Neighborhood Environment Walkability Scale: validity and development of a short form. Medicine and science in sports and exercise, 38(9), 1682.
    Cervero, R., & Kockelman, K. (1997). Travel demand and the 3Ds: Density, diversity, and design. Transportation Research Part D: Transport and Environment, 2(3), 199-219. doi: 10.1016/s1361-9209(97)00009-6
    Chen, Y. (2019). Neighborhood form and residents' walking and biking distance to food markets: Evidence from Beijing, China. Transport Policy, 81, 340-349. doi: https://doi.org/10.1016/j.tranpol.2017.09.015
    Cowie, C. T., Ding, D., Rolfe, M. I., Mayne, D. J., Jalaludin, B., Bauman, A., & Morgan, G. G. (2016). Neighbourhood walkability, road density and socio-economic status in Sydney, Australia. Environmental Health, 15(1). doi: 10.1186/s12940-016-0135-y
    Dasgupta, S., Wheeler, D., Khaliquzzaman, M., & Huq, M. (2021). Siting priorities for congestion-reducing projects in Dhaka: a spatiotemporal analysis of traffic congestion, travel times, air pollution, and exposure vulnerability. International Journal of Sustainable Transportation, 1-19. doi: 10.1080/15568318.2021.1969707
    Davies, G., & Whyatt, J. D. (2014). A network-based approach for estimating pedestrian journey-time exposure to air pollution. Science of The Total Environment, 485-486, 62-70. doi: https://doi.org/10.1016/j.scitotenv.2014.03.038
    de Nazelle, A., Rodríguez, D. A., & Crawford-Brown, D. (2009). The built environment and health: Impacts of pedestrian-friendly designs on air pollution exposure. Science of The Total Environment, 407(8), 2525-2535. doi: https://doi.org/10.1016/j.scitotenv.2009.01.006
    Doiron, D., Setton, E. M., Shairsingh, K., Brauer, M., Hystad, P., Ross, N. A., & Brook, J. R. (2020). Healthy built environment: Spatial patterns and relationships of multiple exposures and deprivation in Toronto, Montreal and Vancouver. Environment International, 143, 106003. doi: https://doi.org/10.1016/j.envint.2020.106003
    Dunteman, G. H. (1994). Principal component analysis. In M. S. Lewis-Beck (Eds.), Factor alysis and related techniques (pp. 157-245). Sara Miller McCune, CA: Sage Publications, Inc.
    Ellis, G., Hunter, R., Tully, M. A., Donnelly, M., Kelleher, L., & Kee, F. (2016). Connectivity and physical activity: using footpath networks to measure the walkability of built environments. Environment and Planning B: Planning and Design, 43(1), 130-151. doi: 10.1177/0265813515610672
    Fonseca, F., Ribeiro, P. J. G., Conticelli, E., Jabbari, M., Papageorgiou, G., Tondelli, S., & Ramos, R. A. R. (2021). Built environment attributes and their influence on walkability. International Journal of Sustainable Transportation, 1-40. doi: 10.1080/15568318.2021.1914793
    Foster, S., Hooper, P., Burton, N. W., Brown, W. J., Giles-Corti, B., Rachele, J. N., & Turrell, G. (2021). Safe Habitats: Does the Association Between Neighborhood Crime and Walking Differ by Neighborhood Disadvantage? Environment and Behavior, 53(1), 3-39. doi: 10.1177/0013916519853300
    Frank, L. D., Sallis, J. F., Saelens, B. E., Leary, L., Cain, K., Conway, T. L., & Hess, P. M. (2010). The development of a walkability index: application to the Neighborhood Quality of Life Study. British Journal of Sports Medicine, 44(13), 924-933. doi: 10.1136/bjsm.2009.058701
    Giles, L. V., & Koehle, M. S. (2014). The Health Effects of Exercising in Air Pollution. Sports Medicine, 44(2), 223-249. doi: 10.1007/s40279-013-0108-z
    Glaeser, E. L., & Kahn, M. E. (2004). Chapter 56 - Sprawl and Urban Growth. In J. V. Henderson & J.-F. Thisse (Eds.), Handbook of Regional and Urban Economics (Vol. 4, pp. 2481-2527): Elsevier.
    Glazier, R., Weyman, J., Creatore, M., Gozdyra, P., Moineddin, R., Matheson, F., . . . Booth, G. (2012). Development and validation of an urban walkability index for Toronto, Canada. Toronto Community Health Profiles Partnership, 1-21.
    Hankey, S., Marshall, J. D., & Brauer, M. (2012). Health impacts of the built environment: within-urban variability in physical inactivity, air pollution, and ischemic heart disease mortality. Environmental health perspectives, 120(2), 247-253.
    Hoek, G., Beelen, R., De Hoogh, K., Vienneau, D., Gulliver, J., Fischer, P., & Briggs, D. (2008). A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmospheric Environment, 42(33), 7561-7578. doi: 10.1016/j.atmosenv.2008.05.057
    Hogendorf, M., Groeniger, J. O., Noordzij, J. M., Beenackers, M. A., & van Lenthe, F. J. (2020). Longitudinal effects of urban green space on walking and cycling: a fixed effects analysis. Health & place, 61, 102264.
    Howell, N. A., Tu, J. V., Moineddin, R., Chen, H., Chu, A., Hystad, P., & Booth, G. L. (2019). Interaction between neighborhood walkability and traffic-related air pollution on hypertension and diabetes: The CANHEART cohort. Environment International, 132, 104799. doi: https://doi.org/10.1016/j.envint.2019.04.070
    Huang, R., Moudon, A. V., Zhou, C., & Saelens, B. E. (2019). Higher residential and employment densities are associated with more objectively measured walking in the home neighborhood. Journal of Transport & Health, 12, 142-151. doi: https://doi.org/10.1016/j.jth.2018.12.002
    IPCC. (2013). Intergovernmental Panel on Climate Change, Climate Change 2013: The Scientific Basis.
    IARC. (2013). Outdoor air pollution a leading environmental cause of cancer deaths.
    James, P., Hart, J. E., & Laden, F. (2015). Neighborhood walkability and particulate air pollution in a nationwide cohort of women. Environmental Research, 142, 703-711. doi: https://doi.org/10.1016/j.envres.2015.09.005
    Janssen, S., Dumont, G., Fierens, F., & Mensink, C. (2008). Spatial interpolation of air pollution measurements using CORINE land cover data. Atmospheric Environment, 42, 4884-4903. doi: 10.1016/j.atmosenv.2008.02.043
    Kaczynski, A. T. (2010). Neighborhood Walkability Perceptions: Associations With Amount of Neighborhood-Based Physical Activity by Intensity and Purpose. Journal of Physical Activity and Health, 7(1), 3-10. doi: 10.1123/jpah.7.1.3
    Keall, M. D., Shaw, C., Chapman, R., & Howden-Chapman, P. (2018). Reductions in carbon dioxide emissions from an intervention to promote cycling and walking: A case study from New Zealand. Transportation Research Part D: Transport and Environment, 65, 687-696. doi: https://doi.org/10.1016/j.trd.2018.10.004
    Kerckhoffs, J., Hoek, G., Gehring, U., & Vermeulen, R. (2021). Modelling nationwide spatial variation of ultrafine particles based on mobile monitoring. Environment International, 154, 9. doi: 10.1016/j.envint.2021.106569
    Khreis, H., Warsow, K. M., Verlinghieri, E., Guzman, A., Pellecuer, L., Ferreira, A., . . . Nieuwenhuijsen, M. (2016). The health impacts of traffic-related exposures in urban areas: Understanding real effects, underlying driving forces and co-producing future directions. Journal of Transport & Health, 3(3), 249-267. doi: https://doi.org/10.1016/j.jth.2016.07.002
    Kuo, C.-P., Fu, J. S., Wu, P.-C., Cheng, T.-J., Chiu, T.-Y., Huang, C.-S., . . . Liang, C.-K. (2021). Quantifying spatial heterogeneity of vulnerability to short-term PM2.5 exposure with data fusion framework. Environmental Pollution, 285, 117266. doi: https://doi.org/10.1016/j.envpol.2021.117266
    Leslie, E., Coffee, N., Frank, L., Owen, N., Bauman, A., & Hugo, G. (2007). Walkability of local communities: Using geographic information systems to objectively assess relevant environmental attributes. Health & Place, 13(1), 111-122. doi: https://doi.org/10.1016/j.healthplace.2005.11.001
    Li, Y., & Myint, S. W. (2021). Fine resolution air quality dynamics related to socioeconomic and land use factors in the most polluted desert metropolitan in the American Southwest. Science of The Total Environment, 788, 147713. doi: https://doi.org/10.1016/j.scitotenv.2021.147713
    Liao, B., Van Den Berg, P. E. W., Van Wesemael, P. J. V., & Arentze, T. A. (2020). Empirical analysis of walkability using data from the Netherlands. Transportation Research Part D: Transport and Environment, 85, 102390. doi: 10.1016/j.trd.2020.102390
    Litman, T. (2017). Economic Value of Walking Walking (Vol. 9, pp. 81-98): Emerald Publishing Limited.
    Liu, H. L., & Shen, Y. S. (2014). The Impact of Green Space Changes on Air Pollution and Microclimates: A Case Study of the Taipei Metropolitan Area. SUSTAINABILITY, 6(12), 8827-8855. doi: 10.3390/su6128827
    Liu, M., Guo, W., Zhao, L., Yang, H., Fang, Q., Li, M., . . . Zhang, X. (2021). Association of personal fine particulate matter and its respiratory tract depositions with blood pressure in children: From two panel studies. Journal of Hazardous Materials, 416, 126120. doi: https://doi.org/10.1016/j.jhazmat.2021.126120
    Lu, H.-Y., Lin, S.-L., Mwangi, J. K., Wang, L.-C., & Lin, H.-Y. (2016). Characteristics and Source Apportionment of Atmospheric PM2.5 at a Coastal City in Southern Taiwan. Aerosol and Air Quality Research, 16(4), 1022-1034. doi: 10.4209/aaqr.2016.01.0008
    Makri, A., & Stilianakis, N. I. (2008). Vulnerability to air pollution health effects. International Journal of Hygiene and Environmental Health, 211(3), 326-336. doi: https://doi.org/10.1016/j.ijheh.2007.06.005
    Manaugh, K., & El-Geneidy, A. (2011). Validating walkability indices: How do different households respond to the walkability of their neighborhood? Transportation Research Part D: Transport and Environment, 16(4), 309-315. doi: 10.1016/j.trd.2011.01.009
    Marquet, O., Floyd, M. F., James, P., Glanz, K., Jennings, V., Jankowska, M. M., . . . Hipp, J. A. (2020). Associations between worksite walkability, greenness, and physical activity around work. Environment and Behavior, 52(2), 139-163.
    Marquet, O., & Miralles-Guasch, C. (2015). The Walkable city and the importance of the proximity environments for Barcelona’s everyday mobility. Cities, 42, 258-266. doi: https://doi.org/10.1016/j.cities.2014.10.012
    Marshall, J. D., Brauer, M., & Frank, L. D. (2009). Healthy Neighborhoods: Walkability and Air Pollution. Environmental Health Perspectives, 117(11), 1752-1759. doi: 10.1289/ehp.0900595
    Martínez-Martínez, O. A., & Ramírez-López, A. (2018). Walkability and the built environment: validation of the Neighborhood Environment Walkability Scale (NEWS) for urban areas in Mexico. Quality & Quantity, 52(2), 703-718. doi: 10.1007/s11135-017-0483-x
    Miao, Y., Porter, W. C., Schwabe, K., & LeComte-Hinely, J. (2022). Evaluating health outcome metrics and their connections to air pollution and vulnerability in Southern California's Coachella Valley. Science of The Total Environment, 821, 153255. doi: https://doi.org/10.1016/j.scitotenv.2022.153255
    Miguet, M., Venetis, S., Rukh, G., Lind, L., & Schiöth, H. B. (2021). Time spent outdoors and risk of myocardial infarction and stroke in middle and old aged adults: Results from the UK Biobank prospective cohort. Environmental Research, 199, 111350. doi: https://doi.org/10.1016/j.envres.2021.111350
    Mohammed, I., Alshuwaikhat, H., & Adenle, Y. (2016). An Approach to Assess the Effectiveness of Smart Growth in Achieving Sustainable Development. Sustainability, 8(4), 397. doi: 10.3390/su8040397
    Nations, U. (2018). Revision of world urbanization prospects. United Nations: New York, NY, USA.
    Neckerman, K. M., Lovasi, G. S., Davies, S., Purciel, M., Quinn, J., Feder, E., . . . Rundle, A. (2009). Disparities in urban neighborhood conditions: evidence from GIS measures and field observation in New York City. Journal of public health policy, 30(1), S264-S285.
    Nieuwenhuijsen, M. J. (2016). Urban and transport planning, environmental exposures and health-new concepts, methods and tools to improve health in cities. Environmental Health, 15(S1). doi: 10.1186/s12940-016-0108-1
    Nieuwenhuijsen, M. J., & Khreis, H. (2016). Car free cities: Pathway to healthy urban living. Environment International, 94, 251-262. doi: https://doi.org/10.1016/j.envint.2016.05.032
    Næss, P. (2014). Urban Form, Sustainability and Health: The Case of Greater Oslo. European Planning Studies, 22(7), 1524-1543. doi: 10.1080/09654313.2013.797383
    Pereira, M. F., Almendra, R., Vale, D. S., & Santana, P. (2020). The relationship between built environment and health in the Lisbon Metropolitan area – can walkability explain diabetes’ hospital admissions? Journal of Transport & Health, 18, 100893. doi: https://doi.org/10.1016/j.jth.2020.100893
    Pikora, T., Giles-Corti, B., Bull, F., Jamrozik, K., & Donovan, R. (2003). Developing a framework for assessment of the environmental determinants of walking and cycling. Social Science & Medicine, 56(8), 1693-1703. doi: https://doi.org/10.1016/S0277-9536(02)00163-6
    Pinkerton, K. E., Zhou, Y., Zhong, C., Smith, K. R., Teague, S. V., Kennedy, I. M., & Ménache, M. G. (2008). Mechanisms of particulate matter toxicity in neonatal and young adult rat lungs. Research report (Health Effects Institute)(135), 3-41; discussion 43.
    Pleis, J. R., & Coles, R. (2009). Summary Health Statistics for US Adults: National Health Interview Survey: Department of Health and Human Services, Centers for Disease Control and ….
    Ramakreshnan, L., Aghamohammadi, N., Fong, C. S., & Sulaiman, N. M. (2021). A comprehensive bibliometrics of ‘walkability’ research landscape: visualization of the scientific progress and future prospects. Environmental Science and Pollution Research, 28(2), 1357-1369. doi: 10.1007/s11356-020-11305-x
    Riggs, W., & Sethi, S. A. (2020). Multimodal travel behaviour, walkability indices, and social mobility: how neighbourhood walkability, income and household characteristics guide walking, biking & transit decisions. Local Environment, 25(1), 57-68. doi: 10.1080/13549839.2019.1698529
    Sabzali Yameqani, A., & Alesheikh, A. A. (2019). Predicting subjective measures of walkability index from objective measures using artificial neural networks. Sustainable Cities and Society, 48, 101560. doi: https://doi.org/10.1016/j.scs.2019.101560
    Sacks, J. D., Stanek, L. W., Luben, T. J., Johns, D. O., Buckley, B. J., Brown, J. S., & Ross, M. (2011). Particulate matter–induced health effects: who is susceptible? Environmental health perspectives, 119(4), 446-454.
    Singh, V., Meena, K. K., & Agarwal, A. (2021). Travellers' exposure to air pollution: A systematic review and future directions. Urban Climate, 38, 100901. doi: https://doi.org/10.1016/j.uclim.2021.100901
    Son, J.-Y., Bell, M. L., & Lee, J.-T. (2010). Individual exposure to air pollution and lung function in Korea: Spatial analysis using multiple exposure approaches. Environmental Research, 110(8), 739-749. doi: https://doi.org/10.1016/j.envres.2010.08.003
    Son, J.-Y., Kim, H., & Bell, M. L. (2015). Does urban land-use increase risk of asthma symptoms? Environmental Research, 142, 309-318. doi: https://doi.org/10.1016/j.envres.2015.06.042
    Song, J., Zhou, S., Xu, J., & Su, L. (2021). From PM2.5 exposure to PM2.5 risks of inhaled dose in daily activities: Empirical evidence during workdays from guangzhou, China. Atmospheric Environment, 249, 118224. doi: https://doi.org/10.1016/j.atmosenv.2021.118224
    Su, S., Pi, J., Xie, H., Cai, Z., & Weng, M. (2017). Community deprivation, walkability, and public health: Highlighting the social inequalities in land use planning for health promotion. Land Use Policy, 67, 315-326. doi: https://doi.org/10.1016/j.landusepol.2017.06.005
    Sun, Y., Moshfeghi, Y., & Liu, Z. (2017). Exploiting crowdsourced geographic information and GIS for assessment of air pollution exposure during active travel. Journal of Transport & Health, 6, 93-104. doi: https://doi.org/10.1016/j.jth.2017.06.004
    Tainio, M., de Nazelle, A. J., Götschi, T., Kahlmeier, S., Rojas-Rueda, D., Nieuwenhuijsen, M. J., . . . Woodcock, J. (2016). Can air pollution negate the health benefits of cycling and walking? Preventive Medicine, 87, 233-236. doi: https://doi.org/10.1016/j.ypmed.2016.02.002
    Tobler, W. R. (1970). A Computer Movie Simulating Urban Growth in the Detroit Region. Economic Geography, 46, 234-240. doi: 10.2307/143141
    Tsiompras, A. B., & Photis, Y. N. (2017). What matters when it comes to “Walk and the city”? Defining a weighted GIS-based walkability index. Transportation Research Procedia, 24, 523-530. doi: https://doi.org/10.1016/j.trpro.2017.06.001
    United Nations (2018). The World's Cities in 2018.
    Wang, H., & Yang, Y. (2019). Neighbourhood walkability: A review and bibliometric analysis. Cities, 93, 43-61. doi: https://doi.org/10.1016/j.cities.2019.04.015
    Wang, Z., & Liu, W. (2015). Determinants of CO2 emissions from household daily travel in Beijing, China: Individual travel characteristic perspectives. Applied Energy, 158, 292-299. doi: https://doi.org/10.1016/j.apenergy.2015.08.065
    Wey, W.-M., & Chiu, Y.-H. (2013). Assessing the walkability of pedestrian environment under the transit-oriented development. Habitat International, 38, 106-118. doi: https://doi.org/10.1016/j.habitatint.2012.05.004
    Wong, J. Y. Y., Jones, R. R., Breeze, C., Blechter, B., Rothman, N., Hu, W., . . . Lan, Q. (2021). Commute patterns, residential traffic-related air pollution, and lung cancer risk in the prospective UK Biobank cohort study. Environment International, 155, 106698. doi: https://doi.org/10.1016/j.envint.2021.106698
    Wu, C.-D., Chen, Y.-C., Pan, W.-C., Zeng, Y.-T., Chen, M.-J., Guo, Y. L., & Lung, S.-C. C. (2017). Land-use regression with long-term satellite-based greenness index and culture-specific sources to model PM2.5 spatial-temporal variability. Environmental Pollution, 224, 148-157. doi: https://doi.org/10.1016/j.envpol.2017.01.074
    Wu, C.-H., Tsai, I. C., Tsai, P.-C., & Tung, Y.-S. (2019). Large–scale seasonal control of air quality in Taiwan. Atmospheric Environment, 214, 116868. doi: https://doi.org/10.1016/j.atmosenv.2019.116868
    World Health Organization. (2004). Health aspects of air pollution: results from the WHO project" Systematic review of health aspects of air pollution in Europe".
    World Health Organization. (2018). Ambient (outdoor) air pollution.
    Xie, X., Semanjski, I., Gautama, S., Tsiligianni, E., Deligiannis, N., Rajan, R. T., . . . Philips, W. (2017). A Review of Urban Air Pollution Monitoring and Exposure Assessment Methods. ISPRS International Journal of Geo-Information, 6(12), 389.
    Yang, Z., Wu, M., Lu, J., Gao, K., Yu, Z., Li, T., . . . Wang, J. (2022). Interaction between walkability and fine particulate matter on risk of ischemic stroke: A prospective cohort study in China. Environmental Pollution, 292, 118482. doi: https://doi.org/10.1016/j.envpol.2021.118482
    Yin, L. (2017). Street level urban design qualities for walkability: Combining 2D and 3D GIS measures. Computers, Environment and Urban Systems, 64, 288-296. doi: https://doi.org/10.1016/j.compenvurbsys.2017.04.001
    Yu, H., Russell, A., Mulholland, J., Odman, T., Hu, Y., Chang, H. H., & Kumar, N. (2018). Cross-comparison and evaluation of air pollution field estimation methods. Atmospheric Environment, 179, 49-60. doi: https://doi.org/10.1016/j.atmosenv.2018.01.045
    Zou, B., Li, S., Zheng, Z., Zhan, B. F., Yang, Z., & Wan, N. (2020). Healthier routes planning: A new method and online implementation for minimizing air pollution exposure risk. Computers, Environment and Urban Systems, 80, 101456. doi: https://doi.org/10.1016/j.compenvurbsys.2019.101456
    王彥鈞(2012)。氣象因子、空氣污染物與兩種疾病復發風險關係之探討。國立臺灣大學臺流行病學與預防醫學研究,台北市。
    李偉誠、謝俊民 (2011)。連棟住宅之街廓比對街谷內風環境之影響-以台南市氣象資料爲例。建築學報,頁 135-153。doi: 10.6377/JA.201103.0009
    林佳薇 (2015)。台灣南部地區細懸浮微粒之特徵。國立成功大學成功大學環境工程學系,台南市。
    林姿蓉(2020)。臺灣短期細懸浮微粒與氣喘之關聯性分析—健保資料庫與政府民間空品資料之整合應用。國立成功大學成功大學環境工程學系,台南市。
    林虹君(2018)。高齡者憂鬱症傾向與其居處周邊建成環境之關聯性研究。未出版之碩士論文,國立成功大學都市計劃學系,台南市。
    林楨家、蕭博正 (2006)。台北市土地混合使用特性對旅次發生之影響。臺灣土地研究, 9(1),89-114。doi: 10.6677/JTLR.200605_9(1).0004
    科技部臺灣氣候變遷推估資訊與調適知識平台(2019)。臺灣空氣品質變化與氣候變遷。取自https://tccip.ncdr.nat.gov.tw/km_newsletter_one.aspx?nid=20191202172107
    許乃尹 (2010)。行道樹綠化對都市風廊道之影響─以台南市東豐路、林森路為例。國立成功大學成功大學環境工程學系,台南市。
    陳宗慶 (2008)。基隆火車站周邊機車停車改善之研究。國立中央大學土木工程研究所,桃園市。
    陳彥儒 (2020)。應用手機信令軌跡資料推估通勤廊道之時空地震災害風險。 國立臺灣師範大學地理學系,台北市。
    陳嘉惠、蔡詠名、張國楨(2019)。細懸浮微粒資料精確度校正探討:以臺北地區空氣盒子為例。地理研究(70),頁 109-141。doi: 10.6234/JGR.201905_(70).0005
    曾于庭、吳治達、龍世俊(2018)。應用土地利用迴歸模式推估北部空品區細懸浮微粒之時空分布。航測及遙測學刊, 23(3),頁 191-204。doi: 10.6574/JPRS.201809_23(3).0004
    臺南市政府環境保護局 (2020)。空氣污染防制計畫書。取自https://www.tainan.gov.tw/News_Content.aspx?n=13373&s=7719631
    蔡黛華 (2008)。都會區空氣污染:交通相關排放源之形成機制、暴露評估與其健康影響。國立台灣大學職業醫學與工業衛生研究所,台北市。
    蘇瑛敏 (2014)。都市住商區永續發展-探討師大住商混合衝突。建築學報 88_S期,頁17 - 31。doi: 10.3966/101632122014060088014

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE