| 研究生: |
張家齊 Chang, Cha-Chi |
|---|---|
| 論文名稱: |
三角洲受交替入流密度及雙坡度岩盤影響之研究 Study of deltas in response to alternative change of inflow density over dual-slope bedrock |
| 指導教授: |
賴悅仁
Lai, Yueh-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 163 |
| 中文關鍵詞: | 異重流 、三角洲 、模型實驗 、水庫淤砂 、擴散理論 、自我相似 |
| 外文關鍵詞: | Hyperpycnal flow, Delta evolution, Small-scale experiments, Reservoir sedimentation, Diffusion theory, Self-similarity |
| 相關次數: | 點閱:228 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
當上游河川挾帶大量土砂流入湖泊、水庫或出海口時,粗顆粒泥砂會在河川與下游水面之交界處(shoreline)堆積形成三角洲,而河川含砂濃度的高低決定了三角洲發展的形態。在台灣或其他季風型氣候國家,往往遭受季節性的暴雨或颱風侵襲,導致河川之含砂濃度提高,當其流入下游之湖泊、水庫或出海口時,會潛入水下形成高密度異重流(hyperpycnal flow),進而形成異重流三角洲(hyperpycnal delta)。而在長時間尺度下,水下之異重流不會持續存在,當颱風或暴雨結束後,上游之河川會逐漸恢復至含砂濃度較低的狀態,此時形成的三角洲稱為吉伯三角洲(Gilbert delta)。Lai and Carpart (2007, 2009)曾提出異重流三角洲具有自我相似性之實驗與理論分析;Swenson et al. (2000)與Lorenzo-Trueba et al. (2009)也相繼提出吉伯三角洲包含兩個移動邊界隨時間發展之理論描述,後者更與實驗比較取得一致的結果。然而,前人之研究大多針對三角洲在單一坡度底床上的發展,並未考慮現地岩盤地形的複雜變化,且少有研究指出在河川含砂濃度交替變化下,由異重流三角洲與吉伯三角洲交替構成之三角洲堆積系統的實驗與理論分析。本研究以鹽水模擬豪雨形成之異重流,清水模擬一般河川之常流情況,在上游提供穩定之輸水量及輸砂量,兩者於固定時距下交替入流;此外,本研究採用五種不同之雙坡度一維渠道以簡化並模擬現地岩盤之條件,目的為透過小尺度模型實驗,探究入流密度交替變化及雙坡度岩盤對三角洲發展的影響。實驗中透過縮時攝影(time-lapse photograph)每5秒記錄三角洲之發展歷程,並以數位影像處理獲得三角洲之底床高程及兩個移動邊界隨時間變化之軌跡。將水面線對齊岩盤坡度之轉折處(slope-break),並以其定為三角洲發展之原點,實驗結果顯示在入流密度的交替改變下,三角洲之演化仍具有高度的自我相似性,且於不同入流密度之事件下,愈後期之發展愈能被理論準確地描述,此結果在未來有機會結合現地資料,協助水庫庫容量之評估、三角洲淤積體積之預測、及河口海岸線消長之演化等。
When a river with high sediment concentration flows into a lake or a reservoir, it may produce a hyperpycnal flow, and form a hyperpycnal delta. On the contrary, the delta formed by a river with low sediment concentration that closes to the receiving basin defined as a Gilbert delta. Lai and Capart (2007, 2009) reported that hyperpycnal deltas possess self-similarity with the validation between experiments and theory; Lorenzo-Trueba et al. (2009) also proposed a theory with regard to two moving boundaries in the evolution of a Gilbert delta. However, most of the previous studies do not consider the slope variation in field basements and the change of river density in response to the changing climate. In this study, we simulate hyperpycnal and homopycnal flows by using salt water and clean water respectively. At the upstream, these two kinds of flows are provided alternatively under constant time period. In the experiments, five different bedrock slopes are selected to understand delta evolution. Our results show that strong self-similarity exists in delta even though the inflow density change alternatively. These results provide potential applications in the fields.
Akiyama, J., and H. G. Stefan (1984), Plunging flow into a reservoir: Theory, Journal of Hydraulic Engineering, 110(4), 484-499.
Altinakar, S., W. H. Graf, and E. Hopfinger (1990), Weakly depositing turbidity current on a small slope, Journal of Hydraulic Research, 28(1), 55-80.
Altinakar, M., W. Graf, and E. Hopfinger (1996), Flow structure in turbidity currents, Journal of Hydraulic Research, 34(5), 713-718.
Bagnold, R. (1962), Auto-suspension of transported sediment; turbidity currents, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 265(1322), 315-319.
Bates, C. C. (1953), Rational theory of delta formation, AAPG Bulletin, 37(9), 2119-2162.
Bell, C. (2008), Punctuated drainage of an ice‐dammed quaternary lake in southern south america, Geografiska Annaler: Series A, Physical Geography, 90(1), 1-17.
Bell, C. M. (2009), Quaternary lacustrine braid deltas on Lake General Carrera in southern Chile, Andean geology, 36(1), 51-65.
Cantelli, A., C. Pirmez, S. Johnson, and G. Parker (2011), Morphodynamic and stratigraphic evolution of self-channelized subaqueous fans emplaced by turbidity currents, Journal of Sedimentary Research, 81(3), 233-247.
Clare, M., J. H. Clarke, P. Talling, M. Cartigny, and D. Pratomo (2016), Preconditioning and triggering of offshore slope failures and turbidity currents revealed by most detailed monitoring yet at a fjord-head delta, Earth and Planetary Science Letters, 450, 208-220.
Clarke, J. E. H. (2016), First wide-angle view of channelized turbidity currents links migrating cyclic steps to flow characteristics, Nature communications, 7.
Clarke, J. E. H., C. R. V. Marques, and D. Pratomo (2014), Imaging active mass-wasting and sediment flows on a fjord delta, Squamish, British Columbia, in Submarine Mass Movements and Their Consequences, edited, pp. 249-260, Springer.
Clarke, J. H., S. Brucker, J. Muggah, I. Church, D. Cartwright, P. Kuus, T. Hamilton, D. Pratomo, and B. Eisan (2012), The Squamish ProDelta: monitoring active landslides and turbidity currents, paper presented at Canadian Hydrographic Conference 2012, Proceedings.
Corner, G., and R. Robertsen (2009), Morphology and sedimentology of an emergent fiord-head Gilbert-type delta: Alta delta, Norway, Coarse-Grained Deltas (Special Publication 10 of the IAS), 27, 155.
Dadson, S., N. Hovius, S. Pegg, W. B. Dade, M. Horng, and H. Chen (2005), Hyperpycnal river flows from an active mountain belt, Journal of Geophysical Research: Earth Surface, 110(F4).
Dadson, S. J., N. Hovius, H. Chen, W. B. Dade, M.-L. Hsieh, S. D. Willett, J.-C. Hu, M.-J. Horng, M.-C. Chen, and C. P. Stark (2003), Links between erosion, runoff variability and seismicity in the Taiwan orogen, Nature, 426(6967), 648-651.
Ellison, T., and J. Turner (1959), Turbulent entrainment in stratified flows, Journal of Fluid Mechanics, 6(03), 423-448.
Ferrer‐Boix, C., J. P. Martín‐Vide, and G. Parker (2015), Sorting of a sand–gravel mixture in a Gilbert‐type delta, Sedimentology, 62(5), 1446-1465.
Grover, N. C., and C. S. Howard (1938), The passage of turbid water through Lake Mead, Transactions of the American Society of Civil Engineers, 103(1), 720-781.
Kao, S.-J., T.-Y. Lee, and J. D. Milliman (2005), Calculating highly fluctuated suspended sediment fluxes from mountainous rivers in Taiwan, Terrestrial Atmospheric and Oceanic Sciences, 16(3), 653.
Kao, S.-J., S. Jan, S.-C. Hsu, T.-Y. Lee, and M. Dai (2008), Sediment Budget in the Taiwan Strait with High Fluvial Sediment Inputs from Mountainous Rivers: New Observations and Synthesis, Terrestrial, Atmospheric & Oceanic Sciences, 19(5).
Kim, W., and T. Muto (2007), Autogenic response of alluvial‐bedrock transition to base‐level variation: Experiment and theory, Journal of Geophysical Research: Earth Surface, 112(F3).
Kim, W., C. Paola, J. B. Swenson, and V. R. Voller (2006), Shoreline response to autogenic processes of sediment storage and release in the fluvial system, Journal of Geophysical Research: Earth Surface, 111(F4).
Kim, W., A. Dai, T. Muto, and G. Parker (2009), Delta progradation driven by an advancing sediment source: Coupled theory and experiment describing the evolution of elongated deltas, Water Resources Research, 45(6).
Kim, Y., W. Kim, D. Cheong, T. Muto, and D. R. Pyles (2013), Piping coarse‐grained sediment to a deep water fan through a shelf‐edge delta bypass channel: Tank experiments, Journal of Geophysical Research: Earth Surface, 118(4), 2279-2291.
Kleinhans, M. G. (2005), Autogenic cyclicity of foreset sorting in experimental Gilbert-type deltas, Sedimentary Geology, 181(3), 215-224.
Kostic, S., and G. Parker (2003), Progradational sand-mud deltas in lakes and reservoirs. Part 1. Theory and numerical modeling, Journal of Hydraulic Research, 41(2), 127-140.
Kostic, S., and G. Parker (2003), Progradational sand-mud deltas in lakes and reservoirs. Part 2. Experiment and numerical simulation, Journal of Hydraulic Research, 41(2), 141-152.
Kostic, S., G. Parker, and J. G. Marr (2002), Role of turbidity currents in setting the foreset slope of clinoforms prograding into standing fresh water, Journal of Sedimentary Research, 72(3), 353-362.
Kubo, Y. s., J. P. Syvitski, E. W. Hutton, and C. Paola (2005), Advance and application of the stratigraphic simulation model 2D-SedFlux: From tank experiment to geological scale simulation, Sedimentary Geology, 178(3), 187-195.
Lai, S. Y. J, and H. Capart (2007), Two‐diffusion description of hyperpycnal deltas, Journal of Geophysical Research: Earth Surface, 112(F3).
Lai, S. Y. J, and H. Capart (2009), Reservoir infill by hyperpycnal deltas over bedrock, Geophysical Research Letters, 36(8).
Lai, S. Y. J, and H. Capart (2008), Response of hyperpycnal deltas to a steady rise in base level, paper presented at 5th IAHR symposium on River, Coastal and Estuarine Morphodynamics.
Lai, S. Y. J. (2006), Self-similar delta formation by hyperpycnal flows: theory and experiments, M.S. thesis, Graduate Institute of Civil Engineering, National Taiwan University, Taiwan.
Lai, S. Y. J. (2010), Morphodynamics of coevolving fluvial and hyperpycnal valleys, PhD dissertation, Graduate Institute of Civil Engineering, National Taiwan University, Taiwan.
Lai, S. Y. J., Y. T. Hsiao and F.-C. Wu, Asymmetric effects of fluvial and subaqueous bedrock slopes on Gilbert delta, in prep.
Lee, H.-Y., and W.-S. Yu (1997), Experimental study of reservoir turbidity current, Journal of Hydraulic Engineering, 123(6), 520-528.
Lintern, D. G., P. R. Hill, and C. Stacey (2016), Powerful unconfined turbidity current captured by cabled observatory on the Fraser River delta slope, British Columbia, Canada, Sedimentology, 63(5), 1041-1064.
Lorenzo-Trueba, J., V. R. Voller, and C. Paola (2013), A geometric model for the dynamics of a fluvially dominated deltaic system under base-level change, Computers & Geosciences, 53, 39-47.
Lorenzo-Trueba, J., V. R. Voller, T. Muto, W. Kim, C. Paola, and J. B. Swenson (2009), A similarity solution for a dual moving boundary problem associated with a coastal-plain depositional system, Journal of Fluid Mechanics, 628, 427-443.
Milliman, J. D., and S.-J. Kao (2005), Hyperpycnal discharge of fluvial sediment to the ocean: impact of super-typhoon Herb (1996) on Taiwanese rivers, The Journal of geology, 113(5), 503-516.
Milliman, J., S. Lin, S. Kao, J. Liu, C. Liu, J. Chiu, and Y. Lin (2007), Short-term changes in seafloor character due to flood-derived hyperpycnal discharge: Typhoon Mindulle, Taiwan, July 2004, Geology, 35(9), 779-782.
Montgomery, D. R., M. Y.-F. Huang, and A. Y.-L. Huang (2014), Regional soil erosion in response to land use and increased typhoon frequency and intensity, Taiwan, Quaternary Research, 81(1), 15-20.
Muck, M. T., and M. B. Underwood (1990), Upslope flow of turbidity currents: a comparison among field observations, theory, and laboratory models, Geology, 18(1), 54-57.
Muto, T. (2001), Shoreline autoretreat substantiated in flume experiments, Journal of Sedimentary Research, 71(2), 246-254.
Muto, T., and H. Okada (1991), A comment on modelling the paleogeography of confined and unconfined marine Gilbert-type deltas, Cuadernos de Geología Ibérica, 15, 139-162.
Muto, T., and R. J. Steel (1992), Retreat of the front in a prograding delta, Geology, 20(11), 967-970.
Muto, T., and R. J. Steel (2001), Autostepping during the transgressive growth of deltas: Results from flume experiments, Geology, 29(9), 771-774.
Muto, T., and R. J. Steel (2004), Autogenic response of fluvial deltas to steady sea-level fall: Implications from flume-tank experiments, Geology, 32(5), 401-404.
Muto, T., and J. B. Swenson (2005), Large‐scale fluvial grade as a nonequilibrium state in linked depositional systems: Theory and experiment, Journal of Geophysical Research: Earth Surface, 110(F3).
Muto, T., and J. B. Swenson (2006), Autogenic attainment of large-scale alluvial grade with steady sea-level fall: An analog tank-flume experiment, Geology, 34(3), 161-164.
Paola, C., P. L. Heller, and C. L. Angevine (1992), The large‐scale dynamics of grain‐size variation in alluvial basins, 1: Theory, Basin Research, 4(2), 73-90.
Parker, G., and T. Muto (2003), 1D numerical model of delta response to rising sea level, paper presented at Proceedings.
Parker, G., Y. Fukushima, and H. M. Pantin (1986), Self-accelerating turbidity currents, Journal of Fluid Mechanics, 171, 145-181.
Parker, G., M. Garcia, Y. Fukushima, and W. Yu (1987), Experiments on turbidity currents over an erodible bed, Journal of Hydraulic Research, 25(1), 123-147.
Patruno, S., G. J. Hampson, and C. A. Jackson (2015), Quantitative characterisation of deltaic and subaqueous clinoforms, Earth-Science Reviews, 142, 79-119.
Plapp, J. E., and J. P. Mitchell (1960), A hydrodynamic theory of turbidity currents, Journal of Geophysical Research, 65(3), 983-992.
Powell, E. J., W. Kim, and T. Muto (2012), Varying discharge controls on timescales of autogenic storage and release processes in fluvio‐deltaic environments: Tank experiments, Journal of Geophysical Research: Earth Surface, 117(F2).
Sequeiros, O. E. (2012), Estimating turbidity current conditions from channel morphology: A Froude number approach, Journal of Geophysical Research: Oceans, 117(C4).
Sequeiros, O. E., B. Spinewine, R. T. Beaubouef, T. Sun, M. H. García, and G. Parker (2010), Characteristics of velocity and excess density profiles of saline underflows and turbidity currents flowing over a mobile bed, Journal of Hydraulic Engineering, 136(7), 412-433.
Stacey, M. W., and A. J. Bowen (1988), The vertical structure of density and turbidity currents: theory and observations, Journal of Geophysical Research: Oceans, 93(C4), 3528-3542.
Storms, J. E., R. M. Hoogendoorn, R. A. Dam, A. Hoitink, and S. Kroonenberg (2005), Late-holocene evolution of the Mahakam delta, East Kalimantan, Indonesia, Sedimentary Geology, 180(3), 149-166.
Swenson, J., V. Voller, C. Paola, G. Parker, and J. Marr (2000), Fluvio-deltaic sedimentation: A generalized Stefan problem, European Journal of Applied Mathematics, 11(05), 433-452.
Syvitski, J. P., and E. W. Hutton (2001), 2D SEDFLUX 1.0 C:: an advanced process-response numerical model for the fill of marine sedimentary basins, Computers & Geosciences, 27(6), 731-753.
Syvrrski, J., and J. Alcott (1993), GRAIN2: Predictions of particle size seaward of river mouths, Computers & Geosciences, 19(3), 399-446.
Talling, P. J., J. Allin, D. A. Armitage, R. W. Arnott, M. J. Cartigny, M. A. Clare, F. Felletti, J. A. Covault, S. Girardclos, and E. Hansen (2015), Key future directions for research on turbidity currents and their deposits, Journal of Sedimentary Research, 85(2), 153-169.
Tomer, A., and T. Muto (2010), Emergence and drowning of fluviodeltaic systems during steady rise of sea level: Implication from geometrical modeling and tank experiments, Journal of the Sedimentological Society of Japan, 69(2), 63-72.
Tomer, A., T. Muto, and W. Kim (2011), Autogenic hiatus in fluviodeltaic successions: geometrical modeling and physical experiments, Journal of Sedimentary Research, 81(3), 207-217.
Toniolo, H., and J. Schultz (2005), Experiments on sediment trap efficiency in reservoirs, Lakes & Reservoirs: Research & Management, 10(1), 13-24.
Toniolo, H., G. Parker, and V. Voller (2007), Role of ponded turbidity currents in reservoir trap efficiency, Journal of Hydraulic Engineering, 133(6), 579-595.
Turmel, D., J. Locat, and G. Parker (2012), Upstream migration of knickpoints: geotechnical considerations, in Submarine Mass Movements and Their Consequences, edited, pp. 123-132, Springer.
Turmel, D., J. Locat, and G. Parker (2015), Morphological evolution of a well‐constrained, subaerial–subaqueous source to sink system: Wabush Lake, Sedimentology, 62(6), 1636-1664.
Turner, J. (1973), Buoyancy effects in fluids, Cambridge Univ.
Voller, V., J. Swenson, and C. Paola (2004), An analytical solution for a Stefan problem with variable latent heat, International Journal of Heat and Mass Transfer, 47(24), 5387-5390.
Weill, P., E. Lajeunesse, O. Devauchelle, F. Métiver, A. Limare, B. Chauveau, and D. Mouazé (2014), Experimental investigation on self-channelized erosive gravity currents, Journal of Sedimentary Research, 84(6), 487-498.
韓其為 (2003),水庫淤積,edited,科學出版社 (北京)。