簡易檢索 / 詳目顯示

研究生: 林孟翰
Lin, Meng-Han
論文名稱: 以嚴謹模擬為基礎之具彈性離網混合式發電系統之最佳設計
A Simulation-Based Approach to Design Flexible Hybrid Power Systems for Standalone Applications
指導教授: 張珏庭
Chang, Chuei-Tin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 59
中文關鍵詞: 彈性指標彈性設計混合式發電系統
外文關鍵詞: Flexibility index, Resilient design, Hybrid power system
相關次數: 點閱:91下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,因為可能的石油短缺,將多種再生能源進行整合的供電系統引起了廣大的研究。儘管太陽能電池 (photovoltaic)、風力發電系統 (wind turbine)以及燃料電池 (fuel cell) 都是可行的選項,但是它們都有各自的優缺點。例如,太陽能電池會因陽光常會受到各種自然因素影響,降低產電能力。而風力發電系統也同樣地受到當地風場強度以及當時風速影響。所以兩者都不適合作為主要的供電單元。然而有著可以快速反應用電需求的燃料電池,卻有著造價高昂的限制。最後,為了解決電力短缺而連接一個巨大的電池在單一產電單元上亦不是一個好的的方法。這是因為造價高昂以及在長期使用上不能確定有足夠的電力提供。總結來說,我們將在給定的用電需求下,尋找一個經過妥善設計的離網混合發電系統,來提供不中斷的電力供給。
    在這個研究中,主要目標是發展一個系統性的方法進行彈性混合離網發電系統設計。這個系統需要在現實操作環境下,儘管環境及用電需求隨機變動的狀況下,仍然具有持續供電的能力。為了達到這個目標,本研究採用動態模擬為基礎的最佳化策略進行暫態彈性指標的計算,用以量化不同設計組成下的暫態彈性大小。本研究中,針對位於台南的成功大學安南校區以當地的天氣以及用電歷史紀錄,進行了大量系統組合的模擬,在其中尋找最佳組合。在這個過程中,建立了以 Matlab/Simulink為主的模擬程式來驗證我們的設計決策。

    Integration of more than one renewable energy source for power generation is a research issue that has attracted considerable attention in recent years. Although the photovoltaic (PV) cell, the wind turbine (WT) and the fuel cell (FC) are all viable alternatives to the traditional steam and gas turbines, each is hampered by its own shortcomings. The PV cell alone is clearly not suitable for practical applications because of the intermittent nature of solar irradiation, while the power output of a WT unit is often unstable due to uncertain and uncontrollable weather conditions. The FC unit is fast to respond to demand changes but can be quite expensive. Finally, note that complementing a single power-generating unit with a large enough battery may not be an ideal solution either. This is due to the high investment cost of battery and its questionable durability in the long term. Thus, it is reasonable to expect that a properly configured hybrid system can provide uninterrupted off-grid power to meet the demand of a given community at any time.
    The goal of this study is to develop a systematic design methodology for configuring flexible hybrid power systems in standalone applications. For actual operation in a realistic environment, such a process must be fully operable despite random fluctuations in energy supplies and power demands. The authors therefore proposed a simulation based optimization strategy to compute two alternative measures, i.e., the dynamic and temporal flexibility indices, for quantitatively evaluating any given design. In order to demonstrate the usefulness of these criteria, the authors synthesized a large number of photovoltaic-fuel cell-wind turbine (PVFCWT) systems for the Annan Campus of National Cheng Kung University in Tainan, Taiwan, and then identified the best design(s) according to their costs and flexibility measures. In addition, the authors also developed a MATLAB/Simulink simulation code to validate these design decisions.

    中文摘要 I Abstract II Index III Table Index V Figure Index VI Nomenclature IX 1 Introduction 1 2 Unit Models 4 2.1 Photovoltaic Cell 5 2.2 PEM Fuel Cell 6 2.3 Wind Turbine 9 2.4 Alkaline Electrolyzer 10 2.5 High-Pressure Hydrogen Storage Tank 12 2.6 Battery 13 3 Flexibility Analyses 15 3.1 Model Constraints 15 3.2 Performance Measures 16 4 Simulation-Based Vertex Method 17 4.1 Vertex Selection Heuristics 18 4.2 Computing Dynamic Flexibility Indices with Exhaustive Enumeration and Bisection Search 20 4.3 Computing Temporal Flexibility Indices with GA-Assisted Enumeration and Bisection Search 22 4.4 Benchmark Examples 25 5 Case Studies 30 5.1 Model Parameters 31 5.2 Design Variables 34 5.3 Performance Measures 35 5.4 Effects of Changing Supply-to-Demand Ratio 42 5.5 Merits of Incorporating Electrolyzer 44 6 Conclusions and Future Works 49 6.1 Conclusions 49 6.2 Future Works 50 References 52 Appendix A: Detail Simulink® model 58 A.1 PEM Fuel Cell 58 A.2 Wind Turbine 59

    Adi, V. S. K., & Chang, C. T. (2011). Two–Tier Search Strategy to Identify Nominal Operating Conditions for Maximum Flexibility. Industrial & Engineering Chemistry Research, 50, 10707–10716.
    Adi, V. S. K., & Chang, C. T. (2013). A mathematical programming formulation for temporal flexibility analysis. Computers & Chemical Engineering, 57, 151-158.
    Adi, V. S. K., & Chang, C. T. (2015). Development of flexible designs for PVFC hybrid power systems. Renewable Energy, 74, 176-186.
    Bajpai, P., & Dash, V. (2012). Hybrid renewable energy systems for power generation in stand-alone applications: A review. Renewable and Sustainable Energy Reviews, 16(5), 2926-2939.
    Baños, R., Manzano-Agugliaro, F., Montoya, F., Gil, C., Alcayde, A., & Gómez, J. (2011). Optimization methods applied to renewable and sustainable energy: A review. Renewable and Sustainable Energy Reviews, 15(4), 1753-1766.
    Bansal, V., Perkins, J. D., & Pistikopoulos, E. N. (2000). Flexibility Analysis and Design of Linear Systems by Parametric Programming. AIChE Journal, 46, 335–354.
    Bansal, V., Perkins, J. D., & Pistikopoulos, E. N. (2002). Flexibility Analysis and Design Using a Parametric Programming Framework. AIChE Journal, 48, 2851–2867.
    Bruni, G., Cordiner, S., Mulone, V., Giordani, A., Savino, M., Tomarchio, G., Malkow, T., Tsotridis, G., Bodker, S., Jensen, J., Bianchi, R., & Picciotti, G. (2014). Fuel cell based power systems to supply power to Telecom Stations. International Journal of Hydrogen Energy, 39(36), 21767-21777.
    Cahill, J. M., Ritland, K. G., Lin-Kelly, W., United States., & United States. (1992). Description of electric energy use in single family residences in the Pacific Northwest, 1986-1992: End-use Load and Consumer Assessment Program (ELCAP). Portland, OR: Office of Energy Resources, Bonneville Power Administration.
    Caux, S., Lachaize, J., Fadel, M., Shott, P., & Nicod, L. (2005). Modelling and control of a Fuel Cell System and Storage Elements in transport applications. Journal of Process Control, 15(4), 481-491.
    Chayawatto, N., Kirtikara, K., Monyakul, V., Jivacate, C., & Chenvidhya, D. (2009). DC–AC switching converter modelings of a PV grid-connected system under islanding phenomena. Renewable Energy, 34(12), 2536-2544.
    Dimitriadis, V. D., & Pistikopoulos, E. N. (1995). Flexibility Analysis of Dynamic Systems. Industrial & Engineering Chemistry Research Ind. Eng. Chem. Res., 34(12), 4451-4462.
    Dixon, S. L., & Hall, C. A. (2010). Fluid mechanics and thermodynamics of turbomachinery. London: Elsevier. Ch. 10, 357–413.
    Doucet, J., Eggleston, D., & Shaw, J. (2006). DC/AC Pure Sine-wave Inverter. Sponsor: NECAMSID
    El-Aal A. E.-M. M. M. A. A. (2005). Modeling and simulation of a photovoltaic fuel cell hybrid system (doctoral dissertation). University of Kassel, Germany.
    Floudas, C. A., Gunus, Z. H., & Ierapetritou, M. G. (2001). Global Optimization in Design under Uncertainty: Feasibility Test and Flexibility Index Problems. Industrial & Engineering Chemistry Research , 40, 4267–4282.
    Grossmann, I. E., & Floudas, C. A. (1987). Active Constraint Strategy for Flexibility Analysis in Chemical Process. Computers and Chemical Engineering, 11, 675–693.
    Grossmann, I. E., & Halemane, K. P. (1982). Decomposition Strategy for Designing Flexible Chemical plants. AIChE Journal, 28, 686–694.
    Halemane, K. P., & Grossmann, I. E. (1983). Optimal Process Design under Uncertainty. AIChE Journal, 29, 425–433.
    Hwang, J., Chang, W., Weng, F., Su, A., & Chen, C. (2008). Development of a small vehicular PEM fuel cell system. International Journal of Hydrogen Energy, 33(14), 3801-3807.
    Khan, M., & Iqbal, M. (2009). Analysis of a small wind-hydrogen stand-alone hybrid energy system. Applied Energy, 86(11), 2429-2442.
    Law, K., Rosenfeld, J., Han, V., Chan, M., Chiang, H., & Leonard, J. (2013).US Department of Energy Hydrogen Storage Cost Analysis (No. DOE/GO14283). TIAX LLC.
    Li, C. H., Zhu, X. J., Cao, G. Y., Sui, S., & Hu, M. (2009). Dynamic modeling and sizing optimization of stand-alone photovoltaic power systems using hybrid energy storage technology. Renewable Energy, 34(3), 815-826.
    Lima F. V., & Georgakis C. (2008). Design of Output Constraints for Model–based Non–square Controllers Using Interval Operability. Journal of Process Control, 18, 610–620.
    Lima, F. V., Georgakis C., Smith, J. F., Schnelle, P. D., & Vinson D. R. (2009). Operability–Based Determination of Feasible Control Constraints for Several High–Dimensional Nonsquare Industrial Processes. AIChE Journal, 56, 1249–1261.
    Lima, F. V., Jia, Z., Ierapetritou, M., & Georgakis, C. (2010). Similarities and Differences Between the Concepts of Operability and Flexibility: The Steady–State Case. AIChE Journal, 56, 702–716.
    Malcom, A., Polan, J., Zhang, L., Ogunnaike, B. A., & Linninger, A. A. (2007). Integrating Systems Design and Control using Dynamic Flexibility Analysis. AIChE Journal, 53, 2048–2061.
    Nelson, D., Nehrir, M., & Wang, C. (2006). Unit sizing and cost analysis of stand-alone hybrid wind/PV/fuel cell power generation systems. Renewable Energy, 31(10), 1641-1656.
    Ostrovski, G. M., & Volin, Y. M. (2002). Flexibility Analysis of Chemical Process: Selected Global Optimization Sub–Problems. Optimization and Engineering, 3, 31–52.
    Ostrovski, G. M., Achenie, L. E. K., Wang, Y. P., & Volin, Y. M. (2001). A New Algorithm for Computing Process Flexibility. Industrial & Engineering Chemistry Research, 39, 2368–2377.
    Petracci, N. C., Hoch, P. M., & Eliceche, A. M. (1996). Flexibility analysis of an ethylene plant. Computers & Chemical Engineering, 20. S443–S448.
    Pistikopoulos, E., & Grossmann, I. (1988). Optimal retrofit design for improving process flexibility in linear systems. Computers & Chemical Engineering, 12(7), 719-731.
    Pistikopoulos, E., & Grossmann, I. (1989). Optimal retrofit design for improving process flexibility in nonlinear systems—I. Fixed degree of flexibility. Computers & Chemical Engineering, 13(9), 1003-1016.
    Pistikopoulos, E., & Grossmann, I. (1989). Optimal retrofit design for improving process flexibility in nonlinear systems—II. Optimal level of flexibility. Computers & Chemical Engineering, 13(10), 1087-1096.
    Rahim, A. A., Tijani, A. S., Fadhlullah, M., Hanapi, S., & Sainan, K. (2015). Optimization of Direct Coupling Solar PV Panel and Advanced Alkaline Electrolyzer System. Energy Procedia, 79, 204-211.
    Saathoff, S. (n.d.). Hybrid Power Is the New Green | OSP Magazine. Retrieved June 22, 2016, from http://www.ospmag.com/issue/article/hybrid-power-new-green
    Sadri, J. A., & Hooshmand P. (2012). A survey study on hybrid photovoltaic system: Technical and economical approach. Journal of Basic and Applied Scientific Research, 2(1), 327-333.
    Swaney, R. E., & Grossmann, I. E. (1985). An Index for Operational Flexibility in Chemical Process Design Part I: Formulation and Theory. AIChE Journal, 31, 621–630.
    Swaney, R. E., & Grossmann, I. E. (1985). An Index for Operational Flexibility in Chemical Process Design Part II: Computational Algorithms. AIChE Journal, 31, 631–641.
    Tesfahunegn, S.G. (2012). Fuel cell assisted photovoltaic power systems (doctoral dissertation). Norwegian University of Science and Technology, Norway.
    Thomas, C. (1998). Affordable hydrogen supply pathways for fuel cell vehicles. International Journal of Hydrogen Energy, 23(6), 507-516.
    Tijani, A. S., Yusup, N. A., & Rahim, A. A. (2014). Mathematical Modelling and Simulation Analysis of Advanced Alkaline Electrolyzer System for Hydrogen Production. Procedia Technology, 15, 798-806.
    Tremblay O., & Dessaint L.-A. (2009). Experimental validation of a battery dynamic model for EV applications. World Electric Vehicle Journal. 3, 1–10.
    Ulleberg, Ø. (2003). Modeling of advanced alkaline electrolyzers: A system simulation approach. International Journal of Hydrogen Energy, 28(1), 21-33
    Ulleberg, Ø, Nakken, T., & Eté, A. (2010). The wind/hydrogen demonstration system at Utsira in Norway: Evaluation of system performance using operational data and updated hydrogen energy system modeling tools. International Journal of Hydrogen Energy, 35(5), 1841-1852.
    United States., Sandia National Laboratories., & United States. (2011). Economic analysis of large-scale hydrogen storage for renewable utility applications. Washington, D.C: United States. Dept. of Energy.
    Varvarezos, D. K., Grossmann, I. E., & Biegler, L. T. (1995). A Sensitivity Based Approach for Flexibility Analysis and Design of Linear Process Systems. Computers and Chemical Engineering, 19, 1301–1316.
    Villalva, M., Gazoli, J., & Filho, E. (2009). Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays. IEEE Transactions on Power Electronics, 24(5), 1198-1208
    Volin, Y. M., & Ostrovski, G. M. (2002). Flexibility Analysis of Complex Technical Systems under Uncertainty. Automation and Remote Control, 63(7), 1123–1136.
    Wang, C., & Nehrir, M. (2008). Power Management of a Stand-Alone Wind/Photovoltaic/Fuel Cell Energy System. IEEE Transactions on Energy Conversion, 23(3), 957-967.
    Wang, C., Nehrir, M., & Shaw, S. (n.d.). Dynamic models and model validation for PEM fuel cells using electrical circuits. IEEE Power Engineering Society General Meeting, 2005.
    Wu, W., Xu, J., & Hwang, J. (2009). Multi-loop nonlinear predictive control scheme for a simplistic hybrid energy system. International Journal of Hydrogen Energy, 34(9), 3953-3964.
    Wu, W., Zhou, Y., Lin, M., & Hwang, J. (2013). Modeling, design and analysis of a stand-alone hybrid power generation system using solar/urine. Energy Conversion and Management, 74, 344-352.

    下載圖示 校內:2020-01-01公開
    校外:2020-01-02公開
    QR CODE