| 研究生: |
韋昕林 Wei, Hsin-Lin |
|---|---|
| 論文名稱: |
不同海拔盤古蟾蜍之攝食量、消化效率與偏好溫度的比較 Food intake, digestive efficiency, and preferred temperature of Bufo bankorensis from different altitudes |
| 指導教授: |
侯平君
Hou, Ping-Chun L. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物學系 Department of Biology |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 英文 |
| 論文頁數: | 49 |
| 中文關鍵詞: | 海拔 、偏好溫度 、消化 、攝食 、盤古蟾蜍 |
| 外文關鍵詞: | digestion, preferred temperature, food intake, Bufo bankorensis |
| 相關次數: | 點閱:162 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
溫度是影響外溫動物生理機能非常重要的因子,通常每一種動物生理反應都有其最佳的溫度範圍。隨著海拔升高,環境溫度逐漸下降,許多高海拔的外溫動物會改變其生理反應的最佳溫度範圍,以適應低溫環境。攝食與消化是動物能量來源的基礎,而偏好溫度(preferred temperature, PT),通常為一動物個體各種生理機能綜合表現較佳的溫度。在一些外溫動物,其偏好溫度通常也是攝食、消化與成長最佳的溫度。因此,本研究以台灣海拔分布廣泛的盤古蟾蜍(Bufo bankorensis)為材料,比較不同海拔族群攝食與消化的最佳溫度範圍,並探討其與偏好溫度之關係。本研究分為兩個章節。在第一章中,我測量馴化在不同溫度下,南仁山(海拔300 m)及阿里山(海拔2300 m)盤古蟾蜍的攝食能量(ingested energy, Ei)與消化效率(apparent digestibility coefficients, ADC),並且比較不同季節其表現是否有差異。第二章則測量馴化在不同溫度下,上述兩個海拔蟾蜍的PT,並探討 PT在日、夜和季節間的差異。結果發現,在攝食方面,南仁山族群冬季Ei的最佳表現溫度在22oC,夏季則在22-30oC。阿里山族群之Ei則隨溫度升高而增加。兩海拔蟾蜍在夏季的Ei均略高於冬季;僅南仁山族群馴養在22oC時,冬季高於夏季。而海拔族群間的差異只出現於冬季馴養在22oC時,南仁山蟾蜍的Ei高於阿里山。在消化方面,兩海拔盤古蟾蜍族群的ADC在馴養溫度內皆表現很高的效率(96-99%),並且隨馴化溫度上升而略微增加;但海拔間消化的差異並非表現在ADC,而是表現於低溫(15oC)馴養時的滯留時間(passage time)-冬季南仁山的蟾蜍在此溫度下整個消化過程比阿里山的蟾蜍多35天。在偏好溫度方面,(1)白天的PT隨著AT升高而增加,(2)在相同AT下,PT在日、夜間沒有差異,只有冬季馴化在22oC的阿里山族群,白天較夜晚偏好較高的溫度;且PT不會隨季節改變。(3)阿里山與南仁山蟾蜍的平均PT分別為22.46-26.69oC及19.86-24.42oC,阿里山蟾蜍族群白天的PT高於南仁山族群,但晚上的PT,與南仁山族群並無差異。綜合上述結果,南仁山族群在偏好溫度範圍內,Ei的確會有最佳的表現,且在此溫度區間內表現的比阿里山族群好。阿里山族群,Ei的最佳溫度是在測試溫度的最高溫(30oC),顯示若有較高的環境溫度,則會提升Ei的表現。但阿里山的環境中,很少有盤谷蟾蜍的偏好溫度。兩海拔蟾蜍族群之ADC在其偏好溫度範圍內皆有很好的表現。此外,阿里山蟾蜍在低溫下的食物滯留時間較短,有利於在高海拔低溫的環境迅速獲得能量。總結本篇的研究,南仁山的環境溫度較接近盤古蟾蜍的偏好溫度,故盤古蟾蜍可有最佳之攝食與消化表現;但阿里山的環境溫度低於盤古蟾蜍的偏好溫度,故盤古蟾蜍無法有最佳之攝食表現。若阿里山的盤古蟾蜍選擇白天溫度較高的微棲地,則有助於縮短食物通過消化道的時間,加快能量獲得的速率。
Temperature is the most important factor affecting the physiology performances of the ectotherms and each physiological function has an optimal temperature range. As elevation increases, environmental temperatures decrease. Many high-altitude ectotherms can alter the optimal temperature ranges in order to function better at the low temperature environments. Food intake and digestion are the essential processes for energy acquisition of organisms. Preferred temperature (PT) is a compromised set point for all physiological performances of an organism. In some ectotherms, food intake, digestion, and growth are maximized at PT. In this study, I use the common toads (Bufo bankorensis), which have wide altitudinal distribution in Taiwan, as a model to compare the optimal temperatures for food intake and digestion in different altitudinal populations, and to examine the relationship between PT and the optimal temperatures for food intake and digestion. In the first chapter, I measured ingested energy (Ei), food passage time, and apparent digestibility coefficients (ADC) in two altitudinal populations of Bufo bankorensis acclimated at different temperatures (15, 22 and 30oC). I also compared these indices in toads collected in winter and summer. In the second chapter, I measured PT of toads from two altitudes acclimated at 8, 15, 22, and 30oC. Furthermore, PT’s in different time of a day and seasons were also measured. The optimal temperature range (To) of Ei varied with season and altitudinal populations in Bufo bankorensis. In summer, the To of Ei for the lowland toads was 22-30oC, which was same as that for the high-altitude toads. In winter, To for the lowland toads was 22oC, but To was 30oC for the high-altitude toads. At low temperature (15oC), food passage time in the highland toads was shorter than that in the lowland toads indicating the turnover rate was faster in the high-altitude toads. ADC of Bufo bankorensis no matter in summer or winter remained rather constant at 96-99% between 15 and 30oC. The highland toads preferred slightly higher (in daytime) or same temperature (at night) than the lowland toads. PT in the lowland and high-altitude toads lacked seasonal variation. Day PT of the highland toads increased in winter when they were acclimated at 22oC. PT’s of the lowland and highland toads were 19.8-24.4oC and 22.5-26.7oC, respectively. In the lowland toads, the temperature range of their natural habitats is close to their PT and, at PT, the lowland toads can maximize their food intakes and ADC. In Alishan, the microhabitats having the toad’s preferred temperatures are probably limited and may reach the PT only in daytime when sunlight is available. However, at PT, food intake of the high-altitude toads increases with rising temperature in winter and reach maximum in summer. In addition, ADC is also maximized at PT in the highland toads. The highland toads have shorter food passage time and similar ADC to the lowland toads; therefore, they can gain energy faster at low temperature. In conclusion, the lowland toads live in habitats where food intake and digestion were maximized and PT is more attainable; however, the highland toads live in habitats where ambient temperatures are far from their PT and food intake is limited. However, if microhabitats with higher temperature in daytime are selected, food intake and digestion can speed up at high altitude.
Angilletta, M. J. 2001. Thermal and physiological constraints on energy assimilation in a widespread lizard (Sceloporus undulatus). Ecology 82:3044-3056.
Avery, R. A., J. D. Bedford, and C. P. Newcombe. 1982. The role of thermoregulation in lizard biology: predatory efficiency in a temperate diurnal basker. Behavioral Ecology and Sociobiology 11:261-267.
Berven, K. A., D. E. Gill, and S. J. Smith-Gill. 1979. Counter-gradient selection in the green frog, Rana clamitans. Evolution 33:609-623.
Bicego-Nahas, K. C., L. H. Gargaglioni, and L. G. S. Branco. 2001. Seasonal changes in the preferred body temperature, cardiovascular, and respiratory responses to hypoxia in the toad, Bufo paracnemis. Journal of Experimental Zoology 289:359-365.
Blem, C. R., C. A. Ragan, and L. S. Scott. 1986. The thermal physiology of two sympatric treefrogs Hyla cinerea and Hyla chrysoscelis (Anura, Hylidae). Comparative Biochemistry and Physiology 85A:563-570.
Bobka, M. S., R. G. Jaeger, and D. C. McNaught. 1981. Temperature dependent assimilation efficiencies of two species of terrestrial salamanders. Copeia 1981:417-421.
Bradford, D. F. 1984. Temperature modulation in a high-elevation amphibian, Rana muscosa. Copeia:966-976.
Branco, L. G. S., and A. A. Steiner. 1999. Central thermoregulatory effects of lactate in the toad Bufo paracnemis. Comparative Biochemistry and Physiology a-Molecular and Integrative Physiology 122:457-461.
Brattstrom, B. H. 1963. A preliminary review of the thermal requirements of amphibians. Ecology 44:238-255.
Brattstrom, B. H. 1979. Amphibian temperature regulation studies in the field and laboratory. American Zoologist 19:345-356.
Brett, J. R. 1971. Energetic responses of salmon to temperature. Astudy of some thermal relations in the physiology and freshwater ecology of sockeye salmon (Oncorhynchus nerka). American Zoologist 11:99-113.
Brody, S. 1945. Bioenergetics and growth. Reinhold Publications, New York.
Carey, C. 1978. Factors affecting body temperatures of toads. Oecologia 35:197-219.
Chen, X. J., X. F. Xu, and X. Ji. 2003. Influence of body temperature on food assimilation and locomotor performance in white-striped grass lizards, Takydromus wolteri (Lacertidae). Journal of Thermal Biology 28:385-391.
Crawford, E. C., Jr. 1982. Behavorial and autonomic thermoregulation in terrestrial ectotherms. Pages 198-215 in C. R. Taylor, K. Johansen, and L. Bolis, editors. Companion to Animal Physiology. Cambridge University Press, New York.
Crawshaw, L. I. 1980. Temperature regulation in vertebrates. Annual Review of Physiology 42:473-491.
Dimmitt, M. A., and R. Ruibal. 1980. Exploitation of food resources by spadefoot toads(Scaphiophus). Copeia 1980:854-862.
Du, W. G., S. J. Yan, and X. Ji. 2000. Selected body temperature, thermal tolerance and thermal dependence of food assimilation and locomotor performance in adult blue-tailed skinks, Eumeces elegans. Journal of Thermal Biology 25:197-202.
Dutton, R. H., L. C. Fitzpatrick, and J. L. Hughes. 1975. Energetics of the rusty lizard Sceloporus olivaceus. Ecology 56:1378-1387.
Feder, M. E. 1982. Thermal ecology of neotropical lungless salamanders (Amphibian: Plethodontidae): environmental temperatures and behavioral response. Ecology 63:1665-1674.
Feder, M. E., and F. H. Pough. 1975. Temperature selection by the red-backed salamander, Plethodon c. cinereus (Green) (Caudata: Plethodontidae). Comparative Biochemistry and Physiology a-Molecular and Integrative Physiology 50:91-98.
Fitzpatrick, L. C. 1973. Influence of seasonal temperatures on the energy budget and metabolic rates of the northern two-lined salamander Eurycea bislineata bislineata. Clinical and Experimental Pharmacology and Physiology A 45:807-818.
Freed, A. N. 1980. An adaptative advantage of basking behavior in an anuran amphibian. Physiological Zoology 54:433-444.
Gancedo, B., A. L. AlonsoGomez, N. dePedro, I. Corpas, M. J. Delgado, and M. AlonsoBedate. 1995. Seasonal changes in thyroid activity in male and female frog, Rana perezi. General and Compararative Endocrinology 97:66-75.
Gancedo, B., A. L. AlonsoGomez, N. dePedro, M. J. Delgado, and M. AlonsoBedate. 1996. Daily changes in thyroid activity in the frog Rana perezi: Variation with season. Comparative Biochemistry and Physiology C-Pharmacology Toxicology & Endocrinology 114:79-87.
Gossling, J., W. J. Loesche, L. D. Ottoni, and G. W. Nace. 1980. Passage material through the gut of hibernating Rana pipiens (Amphibia, Anura, Ranidae). Journal of Herpetology 14:407-409.
Greenwald, O. E. 1974. Thermal dependence of striking and prey capture by gopher snakes. Copeia:141-148.
Harlow, J. J., S. S. Hillman, and M. Hoffman. 1976. The effect of temperature on digestive efficiency in the herbivorous lizard Dipsosaurus dorsalis. Journal of Comparative physiology 111:1-6.
Heller, H. C., L. I. Crawshaw, and H. T. Hammel. 1978. The thermostat of vertebrate animals. Scientific American 239:102-113.
Herter, K. 1936. Die Physiologie der Amphibien. Pages 1-252 in W. Kukenthal, editor. Handbuch der Zoologie. Gruyter, Berlin.
Hertz, P. E. 1981. Adaptation to altitude in two West Indian anoles (Reptilia: Iguanidae): field thermal biology and physiological ecology. Journal of Zoology 195:25-37.
Hertz, P. E., and R. B. Huey. 1981. Compensation for altitudinal changes in the thermal environment by some Anolis lizards on hispaniola. Ecology 62:515-521.
Hutchison, V. H., and R. K. Dupre. 1992. Thermoregulation. Pages 206-249 in M. E. Feder and W. W. Burggren, editors. Environmental physiology of the amphibian. he University of Chicago Press, Chicago and London.
Hutchison, V. H., and L. G. Hill. 1976. Thermal selection in the hellbender, Cryptobranchus alleganiensis, and the mudpuppy, Necturus maculosus. Herpetologica 32:327-331.
Hutchison, V. H., and K. Murphy. 1985. Behavioural thermoregulation in the salamander Necturus maculosus after heat shock. Comparative Biochemistry and Physiology 82A:391-394.
Hutchison, V. H., and K. K. Spriestersbach. 1986. Diel and seasonal cycles of activity and behavioural thermoregulation in the salamander Necturus maculosus. Copeia 1986:612-618.
Ji, X., W. G. Du, and P. Y. Sun. 1996. Body temperature, thermal tolerance and influence of temperature on sprint speed and food assimilation in adult grass lizards, Takydromus septentrionalis. Journal of Thermal Biology 21:155-161.
Jonassen, T. M., A. K. Imsland, R. Fitzgerald, S. W. Bonga, E. V. Ham, G. Naevdal, M. O. Stefansson, and S. O. Stefansson. 2000. Geographic variation in growth and food conversion efficiency of juvenile Atlantic halibut related to latitude. Journal of Fish Biology 56:279-294.
Juszczyk, W., K. Obrzut, and W. Zamachowski. 1966. Morphologicalchanges in the alimentary canal of the common frog (Rana temporaria L.) in the annual cycle. Acta Biologica Cracoviensia 9:239-246.
Kearney, M., and M. Predavec. 2000. Do nocturnal ectotherms thermoregulate? A study of the temperate gecko Christinus marmoratus. Ecology 81:2984-2996.
Larsen, L. O. 1984. Feeding in adult toads: Physiology, behaviour, ecology. Videnskabelige Meddelelser fra Dansk Naturhistorisk Forening 145:97-116.
Larsen, L. O. 1992. Feeding and Digestion. Pages 378-394 in M. E. Feder and W. W. Burggren, editors. Environmental physiology of the amphibian. The University of Chicago Press, Chicago and London.
Lawrence, P., E. Rome, E. D. Stevens, and H. B. John-Alder. 1992. The Influence of Temperature and Thermal Acclimation on Physiological Function. Pages 183-205 in M. E. Feder and W. W. Burggren, editors. Environmental physiology of the amphibian. The University of Chicago Press, Chicago and London.
Lillywhite, H. B. 1971. Temperature selection by the bullfrog, Rana catesbeiana. Comparative Biochemistry and Physiology a-Molecular and Integrative Physiology 40:213-227.
Lillywhite, H. B., P. Licht, and P. Chelgren. 1973. The role of behavioral thermoregulation in the growth energetics of the toad, Bufo boreas. Ecology 54:375-383.
McDonald, P. R., A. Edwards, and J. F. D. Greenhalgh. 1966. Animal nutrition. Oliver and Boyd, London.
Mullens, D. P., and V. H. Hutchison. 1992. Diel, Seasonal, Postprandial and Food-Deprived Thermoregulatory Behavior in Tropical Toads (Bufo marinus). Journal of Thermal Biology 17:63-67.
Navas, C. A. 1997. Thermal extremes at high elevations in the Andes: Physiological ecology of frogs. Journal of Thermal Biology 22:467-477.
Packard G.C. and T.J. Boardman. 1988. The misuse of ratios, indices, and percentages in ecophysiological research. Physiological Zoology 61:1-9.
Refinetti, R., and S. J. Susalka. 1997. Circadian rhythm of temperature selection in a nocturnal lizard. Physiology & Behavior 62:331-336.
Riedel, C., and S. Wood. 1988. Effects of hypercapnia and hypoxia on temperature of the toad, Bufo marinus. FASEB Journal 2:A500.
Saether, B. S., H. K. Johnsen, and M. Jobling. 1996. Seasonal changes in food consumption and growth of Arctic charr exposed to either simulated natural or a 12:12 LD photoperiod at constant water temperature. Journal of Fish Biology 48:1113-1122.
Scapin, S., and S. Lambert-Gardini. 1979. Digestive enzymes in the exocrine pancreas of the frog Rana esculenta. Comparative Biochemistry and Physiology a-Molecular & Integrative Physiology 62:691-697.
Slobodkin, L. B., and A. Rapoport. 1974. An optimal strategy of evolution. Quarterly Review of Biology 49:181-200.
Spotila, J. R. 1972. Role of temperature and water in the ecology of lungless salamanders. Ecological Monographs 42:95-125.
Stevens, E. D. 1988a. Feeding performance of toads at different acclimation temperatures. Canadian Journal of Zoology-Revue Canadienne De Zoologie 66:536-539
Stevens, E. D. 1988b. Acclimation temperature markedly alters the motivation to feed in the toad, Bufo americanus. Journal of Thermal Biology 13:73-78.
Stevens, E. D. 1988c. The effect of acclimation temperature on feeding performance in the toad, Bufo americanus. Comparative Biochemistry and Physiology a-Molecular & Integrative Physiology 89:131-135.
Stevens, E. D., and J. M. McLeese. 1984. Why bluefin tunas have warm tummies: Temperature effect on trypsin and chymotrypsin. American Journal of Physiology 246:487-494.
Throckmorton, G. 1973. Digestive efficiency in the herbivorous lizard Ctenosaura pectinata. Copeia 1973:431-435.
Van Damme, R., D. Buauwens, and R. F. Verheyen. 1991. The thermal dependence of feeding behaviour, food consumption and gut-passage time in the lizard Lacerta vivipara Jacquin. Functional Ecology 5:507-517.
Wind-Larsen, H., and C. B. Jorgensen. 1987. Hormonal control of seasonal growth in a temperate zone toad Bufo bufo. Acta Zoologica 68:49-56.
Witters, L. R., and L. Sievert. 2001. Feeding causes thermophily in the woodhouse's toad (Bufo woodhousii). Journal of Thermal Biology 26:205-208.