| 研究生: |
劉淑芬 Liu, Shu-Fen |
|---|---|
| 論文名稱: |
右設限資料下標竿劑量之估計 Estimation of Benchmark Dose for Right Censored Data |
| 指導教授: |
嵇允嬋
Chi, Yun-Chan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 統計學系 Department of Statistics |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 30 |
| 中文關鍵詞: | 標竿劑量,右設限資料,風險評估 |
| 外文關鍵詞: | risk assessment, right-censored data, benchmark dose |
| 相關次數: | 點閱:93 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在今日,藥物的風險評估是一項非常重要的課題。透過建立標竿劑量,即可求出適合人體的藥物劑量。而標竿劑量的定義為有效劑量之信賴區間的下界。目前為止,大部份的文獻都專注在完整資料上的探討,而較少著重在右設限資料上。因此,本文的目的在於應用Buckley和James及Koul, Susarla和Van Ryzin所提出的兩種無母數方法,針對右設限資料所建立的迴歸模型來估計標竿劑量。並利用一實例來說明前述兩種方法之應用。此外,利用模擬實驗來探討上述兩種方法在估計標竿劑量上的表現。
Risk assessment in drug development is a very important issue in order to gain benefit from drug treatment. The benchmark dose (BMD) approach based on a dose-response relationship is proposed to identify a proper drug dosage for human. The BMD is defined to be the lower limit of confidence interval for an effective dose (ED), where ED is determined by the dose-response model. So far, most literature focuses on complete responses, and less attention has been given to right-censored responses. Therefore, two nonparametric estimation methods for linear model for right-censored data proposed by Buckley and James (1979) and Koul, Susarla and Van Ryzin (1981) are applied to estimate the BMD in this thesis. The implementations of these two methods are demonstrated by a real data set. Furthermore, a simulation study is conducted to investigate the performance of these two methods to estimate a BMD.
[1] Buckley, J., and James, I. (1979), “Linear regression with censored data”, Biometrika, 66, 429~436.
[2] Claeskens, G., Aerts, M., Molenberghs, G., and Ryan, L. (2002), “Robust benchmark dose determination based on profile score methods”, Environmental and Ecological Statistics, 9(4), 357~377.
[3] Crump, K. S. (1984), “A new method for determining allowable daily intakes”, Fndamental and Applied Toxicology, 4, 854~871.
[4] Crump, K. S. (1995), “Calculation of the benchmark doses from continuous data”, Risk Anal, 15, 79~89.
[5] Dekkers, S., de Heer, C., and Rennen, M. (2000), “Critical effect sizes in toxicological risk assessment establishing the breaking point between adverse and non-adverse changes in toxicological effect parameters”, TNO report V99.195, August, http://www.tno.nl/home.page/html
[6] Efron, B. (1979), “Bootstrap methods: another look at the jackknife”, The Annals of Statistics, 7(1), 1~26.
[7] Efron, B. (1981), “Censored data and the bootstrap”, Journal of the American Statistical Association, 76, 312~319.
[8] Efron, B., and Tibshirani, R. J. (1993), “An introduction to the bootstrap”, Chapman & Hall.
[9] Fattore, E., Chu, I., Sand, S., Fanelli, R., Falk-Filippson, A., and Hakansson, H. (2004), “Dose-response assessment using the benchmark dose approadch of changes in hepatic erod activity for individual pylychlorinated”, Organohalogen Compounds, 66, 3402~3407.
[10] Fine, J. P., and Bosch, R. J. (2000), “Risk assessment via a robust probit model, with application to toxicology”, Journal of the American Statistical Association, 95, 375~382.
[11] Ge, H. W. (2000), “The study of acceptable daily intake for right censored survival data”, Master Thesis, The Institute of Statistics of National Central University, Taiwan
[12] Kalbfleisch, J. D., and Prentice, R. L. (1980), “The statistical analysis of failure time data”, New York: John Wiley.
[13] Koul, H., Susarla, V., and Van Ryzin, J. (1981), “Regression analysis with randomly right-censored data”, The Annals of Statistics, 9(6), 1276~1288.
[14] Lai T. L., and Ying Z. (1991), “Large sample theory of a modified Buckley-James estimator for regression analysis with censored data”, The Annals of Statistics, 19(3), 1370~1402.
[15] Louis, T. A. (1981), “Nonparametric analysis of an accelerated failure time model”, Biometrika, 68, 381~390.
[16] Miller, R. (1976), “Least squares regression with censored data”, Biometrika, 63, 449~464.
[17] Patel, K. M., and Hoel, D. G. (1973), “A generalized jonckheere k-sample test against ordered alternatives when observations are subject to arbitrary right censorship”, Communications in Statistics, 2(4), 373~380.
[18] Ritov, Y. (1990), “Estimation in a linear regression model with censored data”, Annals of Statistics, 18, 303~328.
[19] Susarla, V., and Van, R. J. (1980), “Large sample theory for an estimator of the mean survival time from censored samples. Annals of Statistics, 8, 1002~1016.
[20] Tsiatis, A. A. (1990), “Estimating regression parameters using linear rank tests for censored data”, The Annals of Statistics, 18(1), 354~372.
[21] Upton, A. C., Allen, R. C., Brown, R. C., Clapp, N. K., Conklin, J.W., Cosgrove, G. E., Darden, Jr., E.B., Kastenbaurm, M.A., Odell, Jr., T.T., Serrano, L.J., Tyndall, R.L., and Walburg, Jr., H. E. (1969), Quantitative experimental study of low-level radiation carcinogensis”, Radiation-Induced Cancer, International Atomic Energy Agency, Vienna, 425~438.