簡易檢索 / 詳目顯示

研究生: 陳俊宏
Chen, Chun-Hung
論文名稱: 三氮井導電材料之性質研究與三氟甲基對銥錯合物之發光性質探討
Studies of the Properties of [1,3,5]Triazine Hole-transport Materials and Bathochromic Effect of Trifluoromethyl-substituted Ligand on Iridium Complexes
指導教授: 孫亦文
Sun, I-Wen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 84
中文關鍵詞: 有機發光二極體電洞傳輸
外文關鍵詞: OLEDs, hole transport
相關次數: 點閱:61下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文分為兩個主題,第一個主題在針對[1,3,5]Triazine 為中心的化合物TAATZ (2,4,6-triarylamino-1,3,5-triazine)性質開始研究,利用光譜化學和電化學,討論氧化、還原過程及HOMO、LUMO能階,並且實際應用於有機發光二極體中,討論在電洞傳輸層的表現。三氮井材料因缺乏p電子,因此當二苯胺取代基可以提供p電子時,氧化過程可逆性較佳。而甲氧基有利於分子形成非結晶狀態,有效提高材料的成膜性質。
      第二個主題在討論在不同位置的三氟甲基取代,對銥錯化合物的發光性質探討。錯化合物在紫外光範圍,有來自取代基的吸收峰,而在可見光範圍則有金屬中心的MLCT 吸收。在(napy)2Ir(acac)加上三氟甲基取代時,可使放射波長紅移20 nm 以上,(4-fnapy)2Ir(acac)和(5-fnapy)2Ir(acac)放光波長分別為617與613 nm,由光譜化學和電化學資料可知,三氟甲基取代時可大幅降低LUMO 能階,造成放光性質紅移的現象。

      A series of new TAATZ compounds (2,4,6-triarylamino-1,3,5-triazine derivatives were synthesized and their physical and chemical properties were measured. The HOMO energy levels of TAATZ 1-4 were about -5.4 eV and the LUMO levels were from -1.7 eV to -1.9 eV. Unstable radical cation of TAATZ-4 was showed because of its lack of electron donor group. The methoxy group reduces the formation of crystallization. It is help for forming a uniform amorphous thin film by a conventional vacuum deposition.
      New red-emitting iridium complexes of the 2-Naphthalen-1-yl-trifluoromethyl-pyridine (fnapy) ligand with trifluoromethyl group at different positions were synthesized and characterized and the photophysical and electrochemical properties
    were investigated. These iridium complexes exhibit intense absorption bands in the UV region due to p-p* transition and weaker metal-to-ligand charge transfer (MLCT) transitions that extend into the visible region. Upon excited at 470 nm, (4-fnapy)2Ir(acac) and (5-fnapy)2Ir(acac) emit red photoluminescence at 617and 613 nm, respectively. Compared to Ir(napy)2(acac), the introduction of trifluoromethyl-substituted ligands resulted in remarkable bathochromic effect. The trifluoromethyl group has a stronger influence on lowering the LUMO levels.

    目錄................................................................I 表目錄..............................................................III 圖目錄..............................................................IV 縮寫................................................................VII 第一章簡介 第一節緒論...........................................................1 第二節電洞傳輸材料介紹...............................................4 第三節發光材料發展..................................................10 第二章相關實驗部份 第一節使用藥品......................................................16 第二節儀器設備......................................................19 第三節電化學儀器設備................................................20 第三章三氮井導電材料之性質研究 第一節研究動機......................................................21 第二節化合物的置備..................................................24 第三節結果與討論 (一) 合成與結構鑑定.................................................40 (二) 循環伏安法.....................................................41 (三) UV-Vis 吸收光譜................................................43 (四) PL 放射光譜....................................................45 (五) 能階位能.......................................................46 (六) OLED 效能表現..................................................47 第四節結論..........................................................49 第四章三氟甲基對銥錯合物之發光性質探討 第一節研究動機......................................................50 第二節化合物的製備..................................................51 (一) 合成過程與結構.................................................66 (二) 循環伏安法(Cyclic Voltammograms, CV)...........................71 (三) UV-Vis 吸收光譜................................................73 (四) PL 放射光譜與能階..............................................74 (五) OLED 效能表現..................................................77 第四節結論..........................................................81 參考文獻............................................................82

    1. C.W. Tang, and S.A. VanSlyke, Appl. Phys. Lett., 1987, 51, 913
    2. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, Nature, 1990, 347, 539
    3. C. Adachi, S. Tokito, T. Tsutsui and S. Saito, Japan J. Appl. Phys., 1988, 27, L713
    4. J. Kido, M. Kohda, K. Okuyama and K. Nagai, Appl. Phys. Lett., 1992, 61, 761
    5. M. Stolka, J. F. Yanus, and D. M. Pai, J. Phys. Chem., 1984, 88, 4707
    6. C. Adachi, T. Tsutsui and S. Saito, Appl. Phys. Lett., 1990, 57, 531
    7. S. A. VanSlyke, C. H. Chen and C. W. Tang, Appl. Phys. Lett., 1996, 69, 2160
    8. G. E. Johnson, K. M. McGrane and M. Stolka, Pure & Appl. Chem., 1995, 67, 75
    9. Y. Shirota, T. Kobata and N. Noma, Chem. Lett., 1989, 1145
    10. W. Ishihawa, K. Noguchi, Y. Kuwabara and Y. Shirota, Adv. Mater. , 1993, 5, 559
    11. H. Inada and Y. Shirota, J. Mater. Chem., 1993, 3, 319
    12. K. Okumoto and Y. Shirota, Chem. Lett., 2000, 1034
    13. K. Okumoto, K. Wayaku, T. Noda, H. Kageyama and Y. Shirota, Synth. Met.,2000, 111-112, 473
    14. Y. Hamada, T. Sano, M. Fujita, T. Fujii, Y. Nishio and K. Shibata, Chem. Lett.,1993, 905
    15. N. Nakamura, S. Wakabayashi, K. Miyairi, T. Fujii, Chem. Lett., 1994, 1741
    16. P. E. Burrows, L. S. Sapochak, D. M. McCarty, S. R. Forrest and M. E. Thompson, Appl. Phys. Lett., 1994, 64, 2718
    17. H. Tokailin, M. Matsuura, H. Higashi, C. Hosokawa and T. Kusumoto, SPIE proceedings, 1993, 1910, 38
    18. C. W. Tang, S. A. VanSlyke and C. H. Chen, J. Appl. Phys., 1989, 65, 3610 83
    19. M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson and S. R. Forrest, Appl. Phys. Lett., 1999, 75, 4
    20. M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson and S. R. Forrest, Nature, 1998, 395, 151
    21. L. Huang, K. Z. Wang, C. H. Huang, Fu-You Li and Y. Y. Huang, J. Mater. Chem., 2001, 11, 790
    22. Y. Ohmori, H. Kajii, T. Sawatani, H. Ueta and K. Yoshino, Thin Solid Films, 2001, 393, 407
    23. Y. L. Tung, P. C. Wu, C. S. Liu, Y. Chi, J. K. Yu, Y. H. Hu, P. T. Chou, S. M, Peng, G. H. Lee, Y. Tao, A. J. Carty, C. F. Shu and F. I. Wu, Organometallics, 2004, 23, 3745
    24. J. D. Slinker, A. A. Gorodetsky, M. S. Lowry, J. Wang, S. Parker, R. Rohl, S. Bernhard and G. G. Malliaras, J. Am. Chem. Soc., 2004, 126, 2763
    25. Y. L. Tung, P. C. Wu, C. S. Liu, Y. Chi, J. K. Yu, Y. H. Hu, P. T. Chou, S. M. Peng, G. H. Lee, Y. Tao, A. J. Carty, C. F. Shu and F. I. Wu, Organometallics, 2004, 23, 3745
    26. C. L. Li, Y. J. Su, Y. T. Tao, C. H. Chen, P. T. Chou, C. C. Cheng and R. S. Liu, Adv. Funct. Mater., 2005, 15, 387
    27. A. Kapturkiewicz, T. M. Chen, I. R. Laskar and J. Nowacki, Electrochemistry Communications, 2004, 6, 827
    28. J. S. Paulose, D. K. Rayabarapu, J. P. Duan, C. H. Cheng, Adv. Mater., 2004, 16, 2003
    29. J. Jiang, C. Jiang, W. Yang, H. Zhen, F. Huang and Y. Cao, Macromolecules, 2005, 38, 4072
    30. J. C. Ostrowski, M. R. Robinson, A. J. Heeger and G. C. Bazan, Chem. Commun., 2002, 784
    31. A. B. Tamayo, B. D. Alleyne, P. I. Djurovich, S. Lamansky, I. Tsyba, N. N. Ho, R.t Bau and M. E. Thompson, J. Am. Chem. Soc., 2003, 125, 7377
    32. S. J. Yeh, M. F. Wu, C. T. Chen, Y. H. Song, Y. Chi, M. H. Ho, S. F. Hsu and C. H. Chen, Adv. Mater., 2005, 17, 285
    33. V. V. GruShin, N. Herron, D. D. LeCloux, W. J. Marshall, V. A. Petrov and Y. Wang, Chem. Commun., 2001, 1494
    34. A. Tsuboyama, H. Iwawaki, M. Furugori, T. Mukaide, J. Kamatani, S. Igawa, T. Moriyama, S. Miura, T. Takiguchi, S. Okada, M. Hoshino, K. Ueno, J. Am. Chem. Soc., 2003, 125, 12971
    35. F. M. Hwang, H. Y. Chen, P. S. Chen, C. S. Liu, Y. Chi, C. F. Shi, F. I. Wu, P. T. Chou, S. M. Peng, and G. H. Lee, Inorg. Chem., 2005, 44, 1344

    下載圖示 校內:2025-08-24公開
    校外:2025-08-24公開
    QR CODE