簡易檢索 / 詳目顯示

研究生: 游子賢
You, Zih-Sian
論文名稱: 介金屬M5Rh6Sn18 (M = Sc, Y, Lu)之單晶製程及物理特性之研究
Single crystal synthesis and physical properties of M5Rh6Sn18 (M = Sc, Y, Lu) intermetallics
指導教授: 呂欽山
Lue, Chin-Shan
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 56
中文關鍵詞: 三元錫化物籠狀結構熱電超導
外文關鍵詞: Sc5Rh6Sn18, Y5Rh6Sn18, Lu5Rh6Sn18, caged-type structure, thermoelectric
相關次數: 點閱:124下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以Sn助熔劑長晶法製備單晶籠狀結構三元錫化物M5Rh6Sn18 (M = Sc, Y, Lu),並利用XRD對樣品粉末進行晶體結構鑑定,所有樣品皆為tetragonal Dy5Co6Sn18-type phase,無其他結構項存在。為了了解其傳輸性質,我們將測量這一系列合金的磁化率(χ)、電阻率(ρ)、熱電係數(S)及熱傳導率(κ)。由磁化率量測結果得知當M5Rh6Sn18 (M=Sc,Y,Lu)系列樣品溫度低於其相變溫度時,均由包利順磁性(Pauli paramagnetism χ>0)迅速地轉變為逆磁性(Diamagnetism χ<0),可推測所有樣品均進入了超導態,其超導臨界溫度TC分別為5 K、3 K、4 K。由電阻率實驗數據得知,此系列樣品的室溫電阻率相當大約為0.2 mΩ-cm,電阻率隨溫度沒有太大的變化,顯示出此系列樣品具有半金屬電阻特性。由熱電係數的量測發現此系列合金的熱電係數皆為負值,指出其主要傳輸載子為電子。在熱傳導率方面,藉由Wiedemann-Franz law求出電子的熱傳導率(κe)進而得出晶格的熱傳導率(κL),發現此系列合金在低溫時主要由晶格熱傳導率(κL) 貢獻,而在高溫時則是電子熱傳導率(κe) 貢獻較大,值得一提的是室溫晶格熱傳導率約為2 W/m-K ,這樣相對小的晶格熱傳導率可歸因於籠狀晶體結構。由於籠狀結構內部的原子自由地在籠子內震動,增強了聲子散射效應導致晶格貢獻的熱傳導率大幅降低。M5Rh6Sn18 (M=Sc,Y,Lu)在室溫時熱電優值ZT分別為0.004、0.0015、0.005。

    Single crystals of M5Rh6Sn18 (M = Sc, Y, Lu) have been successfully grown by Sn self-flux method and their tetragonal structures have been identified by the x-ray diffraction. We further carried out the temperature-dependent magnetic susceptibility, electrical resistivity, Seebeck coefficient, and thermal conductivity measurements on these single crystals. The observed diamagnetic behavior in the magnetic susceptibility below a transition temperature Tc = 5 K、3 K、4 K confirm the occurrence of the bulk superconductivity in Sc5Rh6Sn18, Y5Rh6Sn18, and Lu5Rh6Sn18. We found that Sc5Rh6Sn18, Y5Rh6Sn18, and Lu5Rh6Sn18 exhibit semi-metallic behavior with weak temperature dependence in their electrical resistivity. For all studied materials, the sign of the Seebeck coefficients is negative, indicating that electrons are dominant carriers for the transport. It is noticeable that the room-temperature lattice thermal conductivity values of these samples are of about 2 W/m-K. Such a relatively low lattice thermal conductivity can be attributed to their caged-type crystal structure which has an effect for reducing the lattice thermal conductivity. Finally, the highest room-temperature ZT value of 0.005 for Lu5Rh6Sn18 was obtained.

    摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VII 表目錄 IX 前言 1 1-1籠狀化合物(Cage compounds) 1 1-2 半金屬(Semi-metal) 6 1-3 研究方向 7 第二章 基礎理論 8 2-1 磁化率(Magnetic susceptibility) 8 2-2 電傳導率(Electric conductivity) 13 2-3 Seebeck效應 18 2-3-1 Seebeck係數 20 2-4 Peltier效應 23 2-5 Thomson效應 24 2-6 熱傳導率(Thermal conductivity) 25 2-7 熱電優值 ZT(Figure of merit) 31 第三章 樣品製備與量測 33 3-1 樣品製作過程 33 3-2 樣品物理參數量測 35 3-2.1 X-ray量測 35 3-2.2 磁化率量測 36 3-2.3 電阻率量測 37 3-2.4 Seebeck coefficient量測 38 3-2.5 熱導率量測 39 第四章 實驗結果與討論 40 4-1 X-ray分析 40 4-2 磁化率量測結果與分析 43 4-3 電阻率量測結果與分析 44 4-4 Seebeck coefficient量測結果與分析 45 4-5 熱導率量測結果與分析 49 4-6 熱電優值 52 第五章 結論 53 參考文獻 54

    1.C. N. Kuo, H. F. Liu, C. S. Lue, L. M. Wang, C. C. Chen, and Y. K. Kuo, Physical Review B 89, 094520 (2014).
    2.L. M. Wang, W. Chih-Yi, C. Guan-Min, C. N. Kuo, and C. S. Lue, New Journal of Physics 17, 033005 (2015).
    3.C. N. Kuo, C. W. Tseng, C. M. Wang, C. Y. Wang, Y. R. Chen, L. M. Wang, C. C. Chen, Y. K. Kuo, and C. S. Lue, Physical Review B 91, 165141 (2015).
    4.S. C. Chen and C. S. Lue, Physical Review B 81, 075113 (2010).
    5.C. S. Lue, S. H. Yang, A. C. Abhyankar, Y. D. Hsu, H. T. Hong, and Y. K. Kuo, Physical Review B 82, 045111 (2010).
    6.C. S. Lue, S. H. Yang, T. H. Su, and B.-L. Young, Physical Review B 82, 195129 (2010).
    7.C. S. Lue, H. F. Liu, B. D. Ingale, J. N. Li, and Y. K. Kuo, Physical Review B 85, 245116 (2012).
    8.楊士弘, 27Al 核磁共振研究CeRu2Al10和CeOs2Al10的能隙狀態 (2011).
    9.J. P. Remeika, G. P. Espinosa, A. S. Cooper, H. Barz, J. M. Rowell, D. B. McWhan, J. M. Vandenberg, D. E. Moncton, Z. Fisk, L. D. Woolf, H. C. Hamaker, M. B. Maple, G. Shirane and W. Thomlinson, Solid State Commun. 34 (1980) 923.
    10.N. Ali and W. R. Datars, Journal of the Less Common Metals 127, 49 (1987).
    11.N. Kase, S. Kittaka, T. Sakakibara, and J. Akimitsu, Journal of the Physical Society of Japan 81, SB016 (2012).
    12.A. Bhattacharyya, D. Adroja, N. Kase, A. Hillier, J. Akimitsu, and A. Strydom, Scientific Reports 5, 12926 (2015).
    13.A. Bhattacharyya, D. T. Adroja, J. Quintanilla, A. D. Hillier, N. Kase, A. M. Strydom, and J. Akimitsu, Physical Review B 91, 060503 (2015).
    14.N. Kase, S. Kittaka, T. Sakakibara, and J. Akimitsu, Journal of the Physical Society of Japan 81, SB016 (2014).
    15.N. Kase, K. Inoue, H. Hayamizu, and J. Akimitsu, Journal of the Physical Society of Japan 80, SA112 (2011).
    16.Z. Zhang, Y. Xu, C. N. Kuo, X. C. Hong, M. X. Wang, P. L. Cai, J. K. Dong, C. S. Lue, and S. Y. Li, Superconductor Science and Technology 28, 105008 (2015).
    17.Burns, Gerald, Solid State Physics ( Academic Press, Inc. , p.339-340, 1985).
    18.D. Jiles, Introduction to magnetism and magnetic materials (CRC press, 2015).
    19.B. D. Cullity and C. D. Graham, Introduction to magnetic materials (John Wiley & Sons, 2011).
    20.李雅明, 固態電子學 (全華, 1995).
    21.Seymour J, Physical Electronics (Pitman, p.48-49, 1972).
    22.中國材料學會固態物理網路教材 (1999).
    23.C. Kittel, Introduction to solid state physics (Wiley, 2005).
    24.J. M. Ziman, Electrons and Phonons, Clarendon, Oxford (2001).
    25.J. Bass, W. P. Pratt, and P. A. Schroeder, Reviews of Modern Physics 62, 645 (1990).
    26.D. D. Pollock, Thermoelectricity: Theory, thermometry, tool (ASTM International, p.111-132, 1985), 852.
    27.許晉源, 碲硒化鉍Bi2Te3-xSex之熱電特性與溫度相依性之探討 (2000).
    28.D. M. Rowe, CRC Handbook of thermoelectric, (CRC Press, Florida, p.1-131, 1995).
    29.盧清隆, A晶格位置無序對La(0.5-x)Ln(x)Ca(0.5-y)A(y)MnO3的磁性、電性及熱性性質影響 (2009).
    30.Frank J. Blatt, Peter A. Schroeder, Carl L. Foiles and Denis Greig, Thermoelectric Power of Metals, (Plenum Press, New York, 1976).
    31.N. F. Mott, H. Jones, The Theory of the Properties of Metals and Alloys (Oxfored, 1936).
    32.H. J. Goldsmid, Electronic Refrigeration, (Pion, London, 1986).
    33.D. M. Rowe, Thermoelectrics handbook: macro to nano (CRC press, 2005).
    34.Y. Tokura, JSAP International No.2 (July 2000).
    35.C. B. Vining, Nature materials 8, 83 (2009).
    36.J. P. Heremans, M. S. Dresselhaus, and L. E. Bell, Nature nanotechnology 8, 471 (2013).
    37.B. D. Cullity and J. W. Weymouth, American Journal of Physics 25, 394 (1957).
    38.R. Kleiner, D. Koelle, F. Ludwig, and J. Clarke, Proceedings of the IEEE 92, 1534 (2004).
    39.R. Fagaly, Review of scientific instruments 77, 101101 (2006).
    40.N. W. Ashcroft and N. Mermin, Physics (New York: Holt, Rinehart and Winston) Appendix C (1976).
    41.Y. Kawaharada, K. Kurosaki, M. Uno, and S. Yamanaka, Journal of Alloys and Compounds 315, 193 (2001).
    42.P. F. Qiu, R. H. Liu, J. Yang, X. Shi, X. Y. Huang, W. Zhang, L. D. Chen, J. Yang, and D. J. Singh, Journal of Applied Physics 111, 023705 (2012).
    43.P. F. Qiu, J. Yang, R. H. Liu, X. Shi, X. Y. Huang, G. J. Snyder, W. Zhang, and L. D. Chen, Journal of Applied Physics 109, 063713 (2011).
    44.R. Heijl, D. Cederkrantz, M. Nygren, and A. E. C. Palmqvist, Journal of Applied Physics 112, 044313 (2012).
    45.L. Qiu, I. P. Swainson, G. S. Nolas, and M. A. White, Physical Review B 70, 035208 (2004).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE