| 研究生: |
劉博翔 Liu, Po-Hsiang |
|---|---|
| 論文名稱: |
微振動HVSR分析在大地工程應用之研究 The Applications of Microtremor HVSR in Geotechnical Engineering |
| 指導教授: |
吳建宏
Wu, Jian-Hong 李德河 Lee, Der-Her |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 241 |
| 中文關鍵詞: | 微振動 、水平垂直頻譜比(HVSR, H/V) 、TGDI 、場址效應 、地震反應 |
| 外文關鍵詞: | Microtremor, Horizontal to vertical spectrum ratio (HVSR, H/V), Taiwan ground deformation index (TGDI), Site effect, Seismic response |
| 相關次數: | 點閱:59 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年各國環保意識日益提升,微振動技術因其永續與低成本的優勢而受到重視。然而,此技術之應用多侷限於地震分析,少有延伸至大地工程範疇。有鑑於此,本文選擇相對低成本的單站式水平垂直頻譜比(HVSR)分析作為研究主軸,探討其技術原理及在大地工程之應用。
本文依據不同研究主題,各章研究場址有所差異。在基礎性質探討方面,第五章利用日本京都盆地的鑽探資料與微振動分析成果,討論該技術在量化地盤剪力波速度特性的潛力。研究結果顯示,穩定的HVSR尖峰可對應特定邊界的共振頻率,而尖峰振幅則可作為放大係數的參考指標。此外,第六章進一步使用台灣花東地區的五個地震站,驗證微振動HVSR在推估地震的共振頻率可行性,地震事件包含2016美濃地震、2022關山地震、2022池上地震。
另一方面,第七章探討微振動HVSR於大地工程之實務應用,其主題包含邊坡穩定評估、脆弱性場址分級,以及震後觀察等三個面向。在邊坡穩定性方面,研究顯示透過布設密集微振動側站,可有效量化台南市六甲區南勢坑邊坡在不同位置的動態反應差異,並由異向性分析成果推估潛在地滑方向。其次,針對場址脆弱性評估,本文提出一項名為「TGDI評估」的新方法:透過「場址-TGDI」與「TGDI閾值」的比較,以劃分場址脆弱性等級。TGDI評估透過2016年美濃地震在台南市的災害案例,初步驗證其構想的可行性。最後,在2022年池上地震震後觀察中,本文發現我國東部建築可能因場址效應或地盤—結構共振問題而發生震損,表明當地應謹慎評估老舊公共設施的耐震性能。總結而言,本文研究成果顯示在探討大地工程實務問題上,微振動分析是一種可以提供良好適用性、並具有操作簡便之優點的處理方法。
This study aimed to apply microtremor techniques in geotechnical engineering to explore new applications. To this end, the microtremor HVSR (Horizontal to vertical spectral ratio) was linked to ground S-wave responses based on the quasi-transfer spectrum theory. Specifically, signals recorded by the JU410 vibrameter were analyzed and cross-validated using borehole data, seismic recordings, and inclinometer measurements to evaluate their correlation with ground response. The results indicate that HVSR spectra are related with geological conditions, and their HVSR peaks can be used to identify resonance frequencies of S-wave during earthquakes. Additionally, microtremor measurements are effective in capturing the dynamic response of slopes. When applied independently, HVSR analysis revealed that damage events from the 2022 Chihshang earthquake were related to site effects. When combined with TGDI (Taiwan ground deformation index) assessment, the HVSR analysis demonstrated significant efficacy in classifying site vulnerability. In conclusion, microtremor techniques hold significant potential in geotechnical engineering.
[1] 中央氣象局,「震度新分級 應變更實用」。交通部中央氣象局新聞稿,2019。
[2] 內政部營建署,「建築物耐震設計規範及解說」,2022。
[3] 田坤國、紀煒穎,「結合UAV與雷射掃描儀於地滑型邊坡滑動變形行為之研究」。南勢坑大規模崩塌潛勢區邊坡行為與預警之研究成果發表研討會論文集,第27-36頁,2020。
[4] 李德河、吳建宏、蔡百祥,「美濃地震台南震害區之大地環境特性」。地工技術,第148期,第45-58頁,2016。
[5] 李德河、徐嘉祥,「深層崩塌再啟動之創新調查、分析技術與流程之研究-子計畫:使用雷達回波建立已變動邊坡再滑動之預警系統研究(I)成果報告」。國家科學及技術委員會,核定編號:MOST 107-2625-M-006-012,台灣,2020。
[6] 李紫彤、王楷霖、陳玟伶、王泰典,「倒懸邊坡潛在岩塊穩定性之微振動特性探討-以物理模型實驗驗證」。第18屆大地工程學術研究討論會論文集,屏東,台灣,2020。
[7] 李振毓,「以微震儀H/V頻譜圖波形進行地層力學特性判釋之研究」。國立成功大學土木工程研究所碩士論文,台南,2020。
[8] 花蓮縣玉里鎮公所,「玉里鎮志」。花蓮縣玉里鎮公所,花蓮,2012。
[9] 青山工程顧問股份有限公司,「106年度臺南市政府工務局第二工務大隊委託市道174線50K+500地滑調查及邊坡監測等評估服務工作成果報告」。台南市政府工務局,報告編號:FN-06406-08-01,2019。
[10] 林志平,「我國西南部山坡區域大地工程特性之研究」。國立成功大學土木工程研究所碩士論文,台南,2021。
[11] 林奕昇,「臺灣西南部山坡區域穩定性探討與利用雷達回波估計及預測降雨量」。國立成功大學土木工程研究所碩士論文,台南,2022。
[12] 林宇軒,「以微振動探討地下土層強度與液化潛勢並評估地層剪力波速之研究」。國立成功大學土木工程研究所碩士論文,台南,2023。
[13] 林哲民、黃雋彥、張毓文、趙書賢,「關山地震與池上地震之震源與強地動特性評估」。地工技術,第176期,第25-32頁,2023。
[14] 柯永彥、黃彥植、高啓津,「基於振動之重力式擋土牆性能評估技術初探」。中國土木水利工程學刊,第32卷,第8期,第755-765頁,2020。
[15] 陳冠宇,「地表微震動與土壤液化潛勢關係之研究:以台南都會區為例」。國立成功大學土木工程研究所碩士論文,台南,2019。
[16] 陳文山,「台灣地質概論」。中華民國地質學會,台北,2016。
[17] 郭子源,「應用地表微振動判釋地層特性與地震場址效應之研究:以台南、高雄地區為例」。國立成功大學土木工程研究所碩士論文,台南,2022。
[18] 莊東霖,「以地表微振動評估台南、北高雄都會區場址效應與土壤液化潛勢之研究」。國立成功大學土木工程研究所碩士論文,台南,2021。
[19] 黃俊鴻、陳正興、蔡祁欽、王國隆、許尚逸、楊炫智、張為光、陳家漢,「美濃地震台南地區土壤液化與地工災害之踏勘調查」。國家地震工程研究中心,報告編號:NCREE-16-004,台灣,2016。
[20] 黃俊鴻,「111年建築物耐震設計規範-土壤液化評估修訂之重點」。技師期刊,第101期,第60-70頁,2023。
[21] 葉昆麟,「台南台地基盤泥岩物性及遇水弱化行為之研究」。國立成功大學土木工程研究所碩士論文,台南,2010。
[22] 劉季宇、洪祥暖,「自來水系統震害」。國家地震工程研究中心簡訊,第97期,第19-20頁,2016。
[23] Abdelrahman, K., Al-Otaibi, N., Ibrahim, E., Binsadoon, A., “Landslide susceptibility assessment and their disastrous impact on Makkah Al-Mukarramah urban Expansion, Saudi Arabia, using microtremor measurements.” Journal of King Saud University Science, 33, 101450, 2021.
[24] Akbayram, K., Bayrak, E., Pamuk, E., Ozer, C., Kiransan, K., Varolgunes, S., “Dynamic sub-surface characteristic and the active faults of the Genç District locating over the Bingöl Seismic Gap of the East Anatolian Fault Zone, Eastern Turkey.” Natural Hazards, 114, 825–847, 2022.
[25] Aki, K., “Space and time spectra of stationary stochastic waves, with special reference to microtremors.” Bulletin of the Earthquake Research Institute, 35, 415-456, 1957.
[26] Akkaya, I., “Availability of seismic vulnerability index (Kg) in the assessment of building damage in Van, Eastern Turkey.” Earthquake Engineering and Engineering Vibration, 19, 189-204, 2020.
[27] Anbazhagan, P., Uday, A., Moustafa, SSR., Al-Arifi, NSN, “Correlation of densities with shear wave velocities and SPT N values.” Journal of Geophysics and Engineering, 13, 320–341, 2016.
[28] Ansary, M.A., Rahman, M.S., “Site amplification investigation in Dhaka, Bangladesh, using H/V ratio of microtremor.” Environmental Earth Sciences, 70, 559–574, 2013.
[29] Arai, H., Tokimatsu, K., “S-wave velocity profiling by inversion of microtremor H/V spectrum.” Bulletin of the Seismological Society of America, 94, 53-63, 2004.
[30] Arai, H., Yamazaki, F., “Exploration of S-wave velocity structure using microtremor arrays in the greater Bangkok, Thailand.” Earthquake Disaster Mitigation Research Center, NIED, Miki, Japan, 2002.
[31] Bai, Y., Adriano, B., Mas, E., Koshimura, S., “Identifying building damage patterns in the 2016 Meinong, Taiwan earthquake using post-event dual-polarimetric ALOS-2/PALSAR-2 imagery.” Journal of Disaster Research, 13, 291-302, 2018.
[32] Baker, J.W., “Quantitative classification of near-fault ground motions using wavelet analysis.” Bulletin of the Seismological Society of America, 97, 1486-1501, 2007.
[33] Bard, P.Y., “Microtremor measurements: a tool for site effect estimation?” Proceedings of The Effects of Surface Geology on Seismic Motion, Rotterdam, Netherlands, 1999.
[34] Beroya, M.M.A., Aydin, A., Tiglao, R., Lasala, M., “Use of microtremor in liquefaction hazard mapping.” Engineering Geology, 107, 140-153, 2009.
[35] Bonilla, L.F., Steidl, J.H., Gariel, J.C., Archuleta, R.J., “Borehole response studies at the Garner Valley Downhole array, Southern California.” Bulletin of the Seismological Society of America, 92, 3165-3179, 2002.
[36] Borcherdt, R.D., “Effects of local geology on ground motion near San Francisco Bay.” Bulletin of the Seismological Society of America, 60, 29–61, 1970.
[37] Bour, M., Fouissac, D., Dominique, P., Martin, C., “On the use of microtremor recordings in seismic microzonation.” Soil Dynamics and Earthquake Engineering, 17, 465-474, 1998.
[38] Bray, J.D., Rodriguez-Marek, A., “Characterization of forward-directivity ground motions in the near-fault region.” Soil Dynamics and Earthquake Engineering, 24, 815-828, 2004.
[39] Brindisi, A., Paolucci, E., Carfagna, N., Albarello, D., “Passive seismic measurements to characterize gas reservoirs in a mud volcano field in Northern Italy.” Marine and Petroleum Geology, 173, 107275, 2025.
[40] Capon, J, “High-resolution frequency-wavenumber spectrum analysis.” Geophysics, 34, 21-38, 1969.
[41] Chen, C.T., Kuo, C.H., Lin, C.M., Huang, J.Y., Wen, K.L., “Investigation of shallow S-wave velocity structure and site response parameters in Taiwan by using high-density microtremor measurements.” Engineering Geology, 297, 106498, 2022.
[42] Cho, I., Iwata, T., “A Bayesian approach to microtremor array methods for estimating shallow S wave velocity structures: identifying structural singularities.” Journal of Geophysical Research: Solid Earth, 124, 527-553, 2019.
[43] Cho, I., Nakazawa, T., “Shallow microtremor array survey using miniature and small arrays: strategy for efficient and feasible dense survey.” Earth and Space Science, 11, e2023EA003472, 2024.
[44] Cho, I., Senna, S., Fujiwara, H., “Miniature array analysis of microtremors.” Geophysics, 78, 13-23, 2013.
[45] Cho, I., Tada, T., “BIDO 2.0 User’s Manual.” Tokyo, Japan, 2010.
[46] Cho, I., Tada, T., Shinozaki, Y., “A new method to determine phase velocities of Rayleigh waves from microseisms.” Geophysics, 69, 1535–1551, 2004.
[47] Cho, I., Tada, T., Shinozaki, Y., “Centerless circular array method: inferring phase velocities of Rayleigh waves in broad wavelength ranges using microtremor records.” Journal of Geophysical Research: Solid Earth, 111, B09315, 2006.
[48] Chung, L.H., Chen, Y.G., Wu, Y.M., Shyu, J.B.H, Kuo, Y.T., Lin, Y.N.N., “Seismogenic faults along the major suture of the plate boundary deduced by dislocation modeling of coseismic displacements of the 1951 M7.3 Hualien–Taitung earthquake sequence in eastern Taiwan.” Earth and Planetary Science Letters, 269, 416-426, 2008.
[49] Cox, K.E., Ashford, S.A., “Characterization of large velocity pulses for laboratory testing, PEER Report 2002/22.” Pacific Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley, California, USA, 2002.
[50] Fäh, D., Kind, F., Giardini, D., “A theoretical investigation of average H/V ratios.” Geophysical Journal International, 145, 535-549, 2001.
[51] Fäh, D., Kind, F., Giardini, D., “Inversion of local S-wave velocity structures from average H/V ratios, and their use for the estimation of site-effects.” Journal of Seismology, 7, 449-467, 2003.
[52] Field, E., Clement, A.C., Jacob, K., Aharonian, V., Hough, S.E., Friberg, P.A., Babaian, T.O., Karapetian, S.S., Hovanessian, S.M., Abramian, H.A., “Earthquake site-response study in Giumri, Armenia, using ambient noise observation.” Bulletin of the Seismological Society of America, 85, 349–353, 1995.
[53] Field, E., Jacob, K., “The theoretical response of sedimentary layers to ambient seismic noise.” Geophysical Research Letters, 20, 2925-2928, 1993
[54] Fiorucci, M., Martino, S., Seta, M.D., Lenti, L., Mancini, A., “Seismic response of landslides to natural and man-induced ground vibrations: Evidence from the Petacciato coastal slope (central Italy).” Engineering Geology, 309, 106826, 2022.
[55] Furukawa, A., Kiyono, K., Toki, K., “Identification of damage to a two-story historic masonry building in Nepal due to the 2015 Gorkha Earthquake using natural frequencies and mode shapes.” XI International Conference on Structural Dynamics, Athens, Greece, 2020.
[56] Gaudio, V.D., Luo, Y., Wang, Y., Wasowski, J., “Using ambient noise to characterise seismic slope response: The case of Qiaozhuang peri-urban hillslopes (Sichuan, China).” Engineering Geology, 246, 374-390, 2018.
[57] Gaudio, V.D., Wasowski, J., “Directivity of slope dynamic response to seismic shaking.” Geophysical Research Letters, 34, L12301, 2007.
[58] Gaudio, V.D., Wasowski, J., Muscillo, S., “New developments in ambient noise analysis to characterise the seismic response of landslide-prone slopes.” Natural Hazards and Earth System Sciences, 13, 2075–2087, 2013.
[59] Gitterman, Y., Zaslavsky, Y., Shapira, A., Shtivelman, V., “Empirical site response evaluations: case studies in Israel.” Soil Dynamics and Earthquake Engineering, 15, 447-463, 1996.
[60] Haghshenas, E., Bard, P.Y., Theodulidis, N., and SESAME WP04 Team, “Empirical evaluation of microtremor H/V spectral ratio.” Bulletin of Earthquake Engineering, 6, 75–108, 2008.
[61] Hakusan Corporation, “DATAMARK Microtremormeter JU410 User’s Manual.” HAKUSAN Corporation, Tokyo, Japan, 2015.
[62] Hayashi, K., Asten, M.W., Stephenson, W.J., Cornou, C., Hobiger, M., Pilz, M., Yamanaka, H., “Microtremor array method using spatial autocorrelation analysis of Rayleigh‑wave data.” Journal of Seismology, 26, 601-627, 2022.
[63] Hayashida, T., Yoshimi, M., Suzuki, H., Mori, S., Kagawa, T., Ichii, K., Yamada, M., “Tracking the effect of human activity on MeSO‐net noise using seismic data traffic—did seismic noise in Tokyo truly decrease during the COVID‐19 state of emergency?” Seismological Research Letters, 94, 2750–2764, 2023.
[64] Horike, M., “Inversion of phase velocity of long-period microtremors to the S-wave velocity structure down to the basement in urbanized area.” Journal of Physics of the Earth, 33, 59-96, 1985.
[65] Horike, M., “Geophysical exploration using microtremor measurements.” Proceedings of the 11th World Conference on Earthquake Engineering, Acapulco, Mexico, 1996.
[66] Horike, M., Zhao, B., Kawase, H., “Comparison of site response characteristics inferred from microtremors and earthquake shear waves.” Bulletin of the Seismological Society of America, 91, 1526-1536, 2001.
[67] Huang, H.C., Tseng, Y.S., Y.S., “Characteristics of soil liquefaction using H/V of microtremors in Yuan-Lin area, Taiwan.” Terrestrial, Atmospheric and Oceanic Sciences, 13, 325-338, 2002.
[68] Ikeda, T., Matsuoka, T., Tsuji, T., Hayashi, K., “Multimode inversion with amplitude response of surface waves in the spatial autocorrelation method.” Geophysical Journal International, 190, 541–552, 2012.
[69] Ishihara, K., “Soil behaviour in earthquake geotechnics.” Oxford University Press, New York, USA, 1996.
[70] Kanai, K., Tanaka, T., “On microtremors VIII.” Bulletin of the Earthquake Research Institute, 39, 97-115, 1961.
[71] Kanai, K., Tanaka, T., Osada, K., “Measurement of the micro-tremor I.” Bulletin of the Earthquake Research Institute, 32, 199-209, 1954.
[72] Kanamori, H., Ye., L., Huang, B.S., Huang, H.H., Lee. S.J., Liang, W.T., Lin, Y.Y., Ma, K.F., Wu, Y.M., Yeh, T.Y., “A strong-motion hot spot of the 2016 Meinong, Taiwan, earthquake (Mw = 6.4).” Terrestrial, Atmospheric and Oceanic Sciences, 28, 637-650, 2017.
[73] Kawase, H., Mori, Y., Nagashima, F., “Difference of horizontal-to-vertical spectral ratios of observed earthquakes and microtremors and its application to S-wave velocity inversion based on the diffuse field concept.” Earth Planets Space, 70, 1, 2018.
[74] Kawase, H., Nagashima, F., Nakano, K., Mori, Y., “Direct evaluation of S-wave amplification factors from microtremor H/V ratios: Double empirical corrections to “Nakamura” method.” Soil Dynamics and Earthquake Engineering, 126, 105067, 2019.
[75] Kawase, H., Sánchez-Sesma, F.J., Matsushima, S., “The optimal use of horizontal-to-vertical spectral ratios of earthquake motions for velocity inversions based on diffuse-field theory for plane waves.” Bulletin of the Seismological Society of America, 101, 2001–2014, 2011.
[76] Khalili, M., Mirzakurdeh, A.V., “Fault detection using microtremor data (HVSR-based approach) and electrical resistivity survey.” Journal of Rock Mechanics and Geotechnical Engineering, 11, 400-408, 2019.
[77] Ko, Y.Y., Tsai, C.C., Hwang, J.H., Hwang, Y.W., Ge, L., Chu, M.C., “Failure of engineering structures and associated geotechnical problems during the 2022 ML 6.8 Chihshang earthquake, Taiwan.” Natural Hazards, 118, 55-94, 2023.
[78] Konno, K., Ohmachi, T., “Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor.” Bulletin of the Seismological Society of America, 88, 228-241, 1998.
[79] Kramer, S.L., “Geotechnical Earthquake Engineering.” Prentice-Hall, New Jersey, USA, 1996.
[80] Kudo, K., “Practical estimates of site response: State of art report.” Proceeding of the 5th International Conference on Seismic Zonation, Nice, France, 1995.
[81] Kuo, C.H., Chen, C.T., Lin, C.M., Wen, K.L., Huang, J.Y., Chang, S.C., “S-wave velocity structure and site effect parameters derived from microtremor arrays in the Western Plain of Taiwan.” Journal of Asian Earth Sciences, 128, 27-41, 2016.
[82] Kuo, C.H., Wen, K.L., Hsieh, H.H., Lin, C.M., Chang, T.M., Kuo, K.W., “Site classification and Vs30 estimation of free-field TSMIP stations using the logging data of EGDT.” Engineering Geology, 129-130, 68-75, 2012.
[83] Lachet, G., Bard, P.Y., “Numerical and theoretical investigations on the possibilities and limitations of Nakamura's technique.” Journal of Physics of the Earth, 42, 377-397, 1994.
[84] Lee, S.J., Liu, T.Y., Lin, T.C., “The role of the west-dipping collision boundary fault in the Taiwan 2022 Chihshang earthquake sequence.” Scientific Reports, 13, 3552, 2023.
[85] Lermo, J., Chávez-García, F.J., “Site effect evaluation using spectral ratios with only one station.” Bulletin of the Seismological Society of America, 83, 1574-1594, 1993.
[86] Lermo, J., Rodríguez, M., Singh, S.K., “The Mexico Earthquake of September 19, 1985-Natural Period of Sites in the Valley of Mexico from Microtremor Measurements and Strong Motion Data.” Earthquake Spectra, 4, 805-814, 1988.
[87] Lin, Y.Y., Yeh, T.Y., Ma, K.F., Song, T.R.A., Lee, S.J., Huang, B.S., Wu, Y.M., “Source characteristics of the 2016 Meinong (ML 6.6), Taiwan, earthquake, revealed from dense seismic arrays: Double sources and pulse-like velocity ground motion.” Bulletin of the Seismological Society of America, 108, 188-199, 2018.
[88] Liu, P.H., Wu, J.H., Lin, Y.H., “Microtremor survey in Tainan city.” 2023 Korea-Japan-Taiwan Joint Conference on Civil Engineering, Busan, Korea, 2023.
[89] Lund, B., Böđvarsson, R., “Correlation of Microearthquake Body-Wave Spectral Amplitudes.” Bulletin of the Seismological Society of America, 92, 2419–2433, 2002.
[90] Lunedei, E., Albarello, D., “On the seismic noise wavefield in a weakly dissipative layered Earth.” Geophysical Journal International, 177, 1001–1014, 2009.
[91] Lunedei, E., Albarello, D., “Theoretical HVSR curves from full wavefield modelling of ambient vibrations in a weakly dissipative layered Earth.” Geophysical Journal International, 181, 1093–1108, 2010.
[92] Lunedei, E., Malischewsky, P., “A review and some new issues on the theory of the H/V technique for ambient vibrations.” In: Ansal, A. (Editor), Perspectives on European Earthquake Engineering and Seismology, Springer, Heidelberg, 371-394, 2015
[93] Malischewsky, P.G., Scherbaum, F., “Love’s formula and H/V-ratio (ellipticity) of Rayleigh waves.” Wave Motion, 40, 57-67, 2004.
[94] Midorikawa, S., “Importance of damage data from destructive earthquakes for seismic microzoning Damage distribution during the 1923 Kanto, Japan, earthquake.” Annals of Geophysics, 45, 769-778, 2002.
[95] Milana, G., Barba, S., Pezzo, E.D., Zambonelli, E., “Site response from ambient noise measurements: New perspectives from an array study in Central Italy.” Bulletin of the Seismological Society of America, 86, 320-328, 1996.
[96] Mittal, H., Kamal, Kumar, A., Singh, S.K., “Estimation of site effects in Delhi using standard spectral ratio.” Soil Dynamics and Earthquake Engineering, 50, 53-61, 2013.
[97] Mokhberi, M., “Vulnerability evaluation of the urban area using the H/V spectral ratio of microtremors.” International Journal of Disaster Risk Reduction, 13, 369-374, 2015.
[98] Moro, G.D., Panza, G.F., “Multiple-peak HVSR curves: Management and statistical assessment.” Engineering Geology, 297, 106500, 2022.
[99] Motamed, R., Ghalandarzadeh, A., Tawhata, I., Tabtabaei, S.H., “Seismic microzonation and damage assessment of Bam city, southeastern Iran.” Journal of Earthquake Engineering, 11, 110-132, 2007.
[100] Nakamura, Y., “A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface.” Quarterly Report of RTRI (Railway Technical Research Institute), 30, 25-33, 1989.
[101] Nakamura, Y., “Real time information systems for seismic hazards mitigation UrEDAS, HERAS and PIC.” Quarterly Report of RTRI (Railway Technical Research Institute), 37, 112-127, 1996.
[102] Nakamura, Y., “Clear identification of fundamental idea of Nakamura’s technique and its applications.” Proceedings of the 12th World Conference on Earthquake Engineering, Auckland, New Zealand, 2000.
[103] Nakamura, Y., “On the H/V spectrum.” Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, China, 2008.
[104] Nakamura, Y., “What is the Nakamura method?” Seismological Research Letters, 90, 1437-1443, 2019.
[105] Nath, S.K., “Seismic microzonation framework - principles and applications.” Proceedings of the workshop on microzonation, Indian Institute of Science, Bangalore, India, 2007.
[106] Okada, H., Suto, K, “The microtremor survey method.” Society of Exploration Geophysicists, Tulsa, USA, 2003.
[107] Omori, F., “Report on the observation of pulsatory oscillations in Japan.” Bulletin of the Imperial Earthquake Investigation Committee, University of Tokyo, 3, 1-35, 1909.
[108] Oubaiche, E.H., Chatelain, J.L., Hellel, M., Wathelet, M., Machane, D., Bensalem, R., Bouguern, A., “The relationship between ambient vibration H/V and SH transfer function: some experimental results.” Seismological Research Letters, 87, 1112–1119, 2016.
[109] Peterson, J., “Observation and modeling of background seismic noise.” Technical report, United States Geological Survey, 1993.
[110] Piña-Flores, J., Perton, M., García-Jerez, A., Carmona E., Luzón, F., Molina-Villegas, J.C., Sánchez-Sesma, F.J., “The inversion of spectral ratio H/V in a layered system using the diffuse field assumption (DFA).” Geophysical Journal International, 208, 577-588, 2017.
[111] Rong, M., Fu, L., Wang, J., “On the differences between horizontal-to-vertical spectral ratios caused by earthquakes and ambient noise—A case study of vertical-array observations in Northern China.” Journal of Applied Geophysics, 182, 104171, 2020.
[112] Sakhakarmi, D., Kawan, C.K., Prajapati, A., Pradhananga, C., Karanjit, S., Bijukchhen, S.M., “Seismic microzonation and soil-structure resonance analysis in Suryabinayak Municipality, Bhaktapur, Nepal: insights from ambient vibration measurements.” Geomatics, Natural Hazards and Risk, 15, 2311892, 2024.
[113] Sambridge, S., “Geophysical inversion with a neighbourhood algorithm—I. Searching a parameter space.” Geophysical Journal International, 138, 479–494, 1999.
[114] Sánchez-Sesma, F.J., Rodríguez, M., Iturrarán-Viveros, U., Luzón, F., Campillo, M., Margerin, L., García-Jerez, A., Suarez, M., Santoyo, M.A., Rodríguez-Castellanos, A., “A theory for microtremor H/V spectral ratio: application for a layered medium.” Geophysical Journal International, 186, 221-225, 2011.
[115] Sant, D.A., Makwana, G.K., Sukumaran, P., Parvez, I.A., Rangarajan, G., Krishnan, K., “Modeling near-surface velocity inversion in a sediment sequence using microtremor HVSR.” Soil Dynamics and Earthquake Engineering, 190, 109235, 2025.
[116] SESAME European research project, “Guidelines for the implementation of the h/v spectral ratio technique on ambient vibrations measurements, processing and interpretation.” Project No. EVG1-CT-2000-00026 SESAME, European Commission – Research General Directorate, 2004.
[117] Shibata, A., “Dynamic analysis of earthquake resistant structures.” Tohoku University Press; Sendai, Japan, 2010.
[118] Shyu, J.B.H., Chung, L.H., Chen, Y.G., Lee, J.C., Sieh, K., “Re-evaluation of the surface ruptures of the November 1951 earthquake series in eastern Taiwan, and its neotectonic implications.” Journal of Asian Earth Sciences, 31, 317-331, 2007.
[119] Singhal, U., Pavan, G.S., “Deconvolution of Earthquake Ground Motions for Dynamic Analysis of Masonry Gravity Dams.” In: Jayalekshmi, B.R., Rao, K.S.N., Pavan, G.S. (Editors), Technologies for Sustainable Buildings and Infrastructure, Springer, Singapore, 523–533, 2024.
[120] Stanko, D., Markušić, S., “An empirical relationship between resonance frequency, bedrock depth and VS30 for Croatia based on HVSR forward modelling.” Natural Hazards, 103, 3715-3743, 2020.
[121] Stanko, D., Markušić, S., Strelec, S., Gazdek, M., “HVSR analysis of seismic site effects and soil-structure resonance in Varaždin city (North Croatia).” Soil Dynamics and Earthquake Engineering, 92, 666-677, 2017.
[122] Subedi, B., Kiyono, J., Furukawa, A., Ono, Y., Ornthammarath, T., Kitaoka, T., Charatpangoon, B., Latcharote, P., “Estimation of ground profiles based on microtremor survey in the Bangkok basin.” Frontiers in Built Environment, 7, 651902, 2021.
[123] Tada, T., Cho, I., Shinozaki, Y., “Beyond the SPAC method: exploiting the wealth of circular-array methods for microtremor exploration.” Bulletin of the Seismological Society of America, 97, 2080-2095, 2007.
[124] Tada, T., Cho, I., Shinozaki, Y., “New circular-array microtremor techniques to infer Love-wave phase velocities.” Bulletin of the Seismological Society of America, 99, 2912-2926, 2009.
[125] Telesca, L., Lovallo, M., Alcaz, V., Ilies, I., “Site-dependent organization structure of seismic microtremors.” Physica A: Statistical Mechanics and its Applications, 421, 541-547, 2015.
[126] Toksöz, M.N., Lacoss, R.T., “Microseisms: mode structure and sources.” Science, 159, 872-873, 1968.
[127] Towhata, I., “Geotechnical earthquake engineering.” Springer; Berlin, Germany, 2008.
[128] Trichandi, R., Bauer, K., Ryberg, T., Wawerzinek, B., Vargas, J.A., von Blanckenburg, F., Krawczyk, C.M., “Shear-wave velocity imaging of weathered granite in La Campana (Chile) from Bayesian inversion of micro-tremor H/V spectral ratios.” Journal of Applied Geophysics, 217, 105191, 2023.
[129] Tsai, C.C., Hsu, S.Y., Wang, K.L., Yang, H.C., Chang, W.K., Chen, C.H., Hwang, Y.W., “Geotechnical reconnaissance of the 2016 ML6.6 Meinong Earthquake in Taiwan.” Journal of Earthquake Engineering, 22, 1710-1736, 2017.
[130] Uyanik, O., “The porosity of saturated shallow sediments from seismic compressional and shear wave velocities.” Journal of Applied Geophysics, 73, 16-24, 2011.
[131] van Ginkel, J., Ruigrok, E., Stafleu, J., Herber, R., “Development of a seismic siteresponse zonation map for the Netherlands.” Natural Hazards and Earth System Sciences, 22, 41-63, 2022.
[132] Vantassel, J.P., Ilgac, M., Zekkos, A.A., Yong, A., Hassani, B., Martin, A.J., “Are the horizontal‐to‐vertical spectral ratios of earthquakes and microtremors the same?” Bulletin of the Seismological Society of America, 114, 3078-3092, 2024.
[133] Wang, J., Li, X., Rong, M., Zhao, Q., Kong, X., “Influence of soil parameter uncertainties on site ambient noise horizontal to vertical spectral ratio modeling.” Soil Dynamics and Earthquake Engineering, 187, 108950, 2024.
[134] Wang, Y., Liang, J., Ba, Z., “Weak nonlinear seismic response of 3D sedimentary basin using a new masing soil nonlinear model.” Soil Dynamics and Earthquake Engineering, 171, 107982, 2023.
[135] Wang, F., Okeke, A.C.U., Kogure, T., Sakai, T., Hayashi, H., “Assessing the internal structure of landslide dams subject to possible piping erosion by means of microtremor chain array and self-potential surveys.” Engineering Geology, 234, 11-26, 2018.
[136] Wathelet, M., “An improved neighborhood algorithm: Parameter conditions and dynamic scaling.” Geophysical Research Letters, 35, L09301, 2008.
[137] Wathelet, M., Jongmans, D., Ohrnberger, M., “Surface-wave inversion using a direct search algorithm and its application to ambient vibration measurements.” Near Surface Geophysics, 2, 211-221, 2004.
[138] Wu, J.H., Hsieh, P.H., “Numerical assessment of the impact area and the geometry of a landslide dam: the Nan-Shi-Keng landslide.” Journal of GeoEngineering, 16, 155-167, 2021.
[139] Yaghmaei-Sabegh, S., Rupakhety, R., “A new method of seismic site classification using HVSR curves: A case study of the 12 November 2017 Mw 7.3 Ezgeleh Earthquake in Iran.” Engineering Geology, 270, 105574, 2020.
[140] Yamanaka, H., Dravinski, M., Kagami, H., “Continuous measurements of microtremors on sediments and basement in Los Angeles, California.” Bulletin of the Seismological Society of America, 83, 1595-1609, 1993.
[141] Zhao, B.M., Horike, M., Takeuchi, Y., “Reliability of estimation of seismic ground characteristic by microtremor observation.” Proceedings of the 11th European Conference on Earthquake Engineering, Paris, France, 1998.
[142] Zhao, J.X., Irikura, K., Zhang, J., Fukushima, Y., Somerville, P.G., Asano, A., Ohno, Y., Oouchi, T., Takahashi, T., Ogawa, H., “An empirical site-classification method for strong-motion stations in Japan using H/V response spectral ratio.” Bulletin of the Seismological Society of America, 96, 914–925, 2006.
[143] 北村八朗、小川安雄、土岐憲三、桑原徹、栗本修、江尻譲嗣,「京都市における深層地下構造探査と地震動予測」。第24回地震工学研究発表会講演論文集,第37-40頁,1997。
[144] 安井譲、植本安彦、野口竜也、小嶋啓介、前田寿朗,「福井土木事務所地点のH/Vスペクトルの特性について」。福井工業大学研究紀要,第37号,第181-188頁,2007。
[145] 阿部司、横山秀吉、中塚勝人,「鬼首地熱地域における微動の到来方向について」。日本鉱業会誌,第99卷,第347-352頁,1983。
[146] 佐藤浩章,「わかりやすい物理探査「微動探査 2」」。物理探査ニュース,第21号,第1-4頁,2014。
[147] 京都市住宅局建築指導部審査課,「京都市内ボーリングデーター集」。株式会社大龍堂書店,京都,日本,1986。
[148] 長郁夫,「微動アレイ探査の概説:特に浅部地質調査への適用を見据えて」。地質学雑誌,第129巻,第1号,第371–378頁,2023。
[149] 浅野公之、岩田知孝、関口春子、杉山長志,「近江盆地南部における微動アレイ探査」。京都大学防災研究所年報,第64(B)号,第 9-20頁,2021。
[150] 凌甦群、岡田廣,「微動探査法における空間自己相関法の拡張」。物理探査学会第89回学術講演会論文集,第44–48頁,1993。
[151] 野越三雄、五十嵐享,「微動の伝播性」。地震第2輯,第23卷,第4期,第264-280頁,1970a。
[152] 野越三雄、五十嵐享,「微動の振幅特性(その1)」。地震第2輯,第23卷第4期,第281-303頁,1970b。
[153] 野越三雄、五十嵐享,「微動の振幅特性(その2)」。地震第2輯,第24卷第1期,第26-40頁,1971。
[154] 斎藤正徳,「水平2成分アレーを用いた縦波・横波成分の分離」。物理探査,第60巻,第4号,第297–304頁,2007。
[155] 野津厚,「地震に強い港湾を低コストで実現するための港湾計画上の工夫について」。地盤工学会誌:土と基礎,第64巻,第7号,第4-7頁,2016。
[156] 植村善博,「変位地形と地下構造からみた京都盆地の活断層」。京都歴史災害研究,第2号,第7–28頁,2004。
[157] 落合努、犬伏徹志、荏本孝久,「時微動による地域特性を考慮したハザードマップの作成」。日本地震工学会論文集,第19巻,第5号,第136–145頁,2019。
校內:2030-07-14公開