簡易檢索 / 詳目顯示

研究生: 洪靖翔
Hong, Jing-Xiang
論文名稱: 抗體金奈米探針應用於免疫沉澱
Gold nanoparticle-based antibody probes for immuoprecipitation
指導教授: 陳淑慧
Chen, Shu-Hui
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 90
中文關鍵詞: 免疫沉澱金奈米粒子雌激素受體阿爾法
外文關鍵詞: immunoprecipitation, gold nanoparticles, estrogen receptor alpha
相關次數: 點閱:102下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以金奈米粒子做為固態載體,在金奈米上進行表面修飾,製備成金奈米生物探針,並且將此探針應用在免疫沉澱(Immunoprecipitation, IP)實驗上,對乳癌細胞MCF-7細胞萃取液中的雌激素受體阿爾法蛋白質(estrogen receptor alpha, ERα)進行免疫沉澱。將蛋白質G修飾之金奈米粒子與抗體Fc端形成鍵結,形成具有方向性的雌激素受體阿爾法抗體(anti-estrogen receptor alpha; anti-ERα )探針。為了進一步降低金奈米探針的非專一吸附,我們以相同方法合成修飾IgG抗體金奈米探針,作為預清理的探針,將細胞中會造成非專一性吸附的蛋白質去除,較乾淨的上清液再和修飾雌激素受體抗體金奈米探針進行免疫沉澱。結合預清理的步驟和抗體金奈米探針免疫沉澱,從MCF-7細胞萃取液中進行免疫沉澱,由一盤15公分細胞培養皿所得到的雌激素受體阿爾法的回收率約為81%,絕對量約為10 pmol。與市售的用於免疫沉澱的固態載體膠體小珠相比之下,抗體金奈米探針具有較高的雌激素受體阿爾法回收率且較低對serum albumin、HSP、ribosomal proteins等高存在量之非專一性蛋白質吸附。直接經由質譜分析,不用再經過SDS-PAGE分離,即可鑑定到目標蛋白質ERα。以膠內消化的方式再配合多種酵素組合,鑑定到的雌激素受體阿爾法序列涵蓋率為71%,且不需要經過額外的親和層析純化方法,也可觀察到雌激素受體阿爾法上某些具有轉譯後修飾的勝肽序列。

    In this study, we fabricated immunoprobes using gold nanoparticles (AuNPs) as the solid support and applied the probes for immunoprecipitation against estrogen receptor alpha (ERα) in MCF-7 breast cancer cell lysates. We used protein G modified AuNPs to bind with the Fc domain of anti-ERα for ERα purification. In order to reduce the non-specific binding, we used the same method to fabricate AuNP-based anti-IgG probes for sample pre-cleaning prior to IP experiments. Combining the pre-cleaning step using AuNP-IgG probe and IP experiments using AuNP-anti- ERα probe, we determined the absolute amount of ERα from a 15-cm dish of MCF-7 cells was around 10 pmol and the IP recovery was around 81%. Compared to the commercial gel beads used in IP experiment, the AuNPs-based probes have higher recovery rate but much less non-specific binding towards many high abundant proteins such as serum albumin, HSP, and ribosomal proteins. Based on MS analysis of the pulled down proteins, the targeting protein ERα could be identified without separation by SDS-PAGE. By coupling SDS-PAGE separation and multiple enzyme digestion, a sequence coverage of 71% ER could be achieved and some phosphorylation and oxidations sites of ERα could be positively identified without additional affinity purifications.

    中文摘要 I 英文摘要 II 致謝 III 目錄 IV 表目錄 VI 圖目錄 VII 第一章 緒論 1 1.1 蛋白質體學 1 1.2 質譜分析應用於蛋白質體學 4 1.2.1 基質輔助雷射脫附游離 4 1.2.2 電噴灑離子化 5 1.3 蛋白質複合體 6 1.3.1 抗體與抗原 7 1.3.2 免疫沉澱 8 1.4 奈米科學與生物醫學 10 1.4.1 磁性奈米粒子 10 1.4.2 金奈米粒子 11 第二章 實驗 20 2.1 藥品與儀器 20 2.1.1 藥品 20 2.1.2 儀器 20 2.2 製備金奈米粒子 21 2.3 製備金奈米探針 21 2.3.1 製備硫醇化蛋白質G 21 2.3.2 製備抗體金奈米探針 21 2.4 抗體金奈米探針用於免疫沉澱 22 2.5 製備抗體膠體小珠探針 23 2.6 抗體膠體小珠探針免疫沉澱 23 2.7 西方點墨法 24 2.8 膠體染色考馬斯藍 (Coomassie Blue) 24 2.9 膠體螢光染色 (SYPRO ® Ruby Protein Gel Stain) 25 2.10 膠體內消化 25 2.11 三氯乙酸(Trichloroacetic acid, TCA)沉澱與溶液中消化 26 2.12 細胞培養與施加藥物雌二醇 (Estradiol, E2) 26 2.13 萃取細胞蛋白質 27 2.14 奈升級液相層析質譜分析 27 2.15 蛋白質資料庫比對 28 第三章 結果與討論 31 3.1 抗體金奈米探針UV-VIS 吸收光譜圖 31 3.2 抗體金奈米探針應用於免疫沉澱 32 3.3 最佳化洗滌抗體金奈米探針溶液 33 3.4 最佳化洗滌溶液體積 35 3.5 預清理 36 3.5.1 比較蛋白質G與IgG探針預清理效果 36 3.5.2 最佳化預清理探針洗滌溶液與洗滌次數 38 3.5.3 最佳化預清理時間 40 3.6 定量計算免疫沉澱雌激素受體阿爾法回收率 41 3.7 定量計算免疫沉澱雌激素受體阿爾法絕對量 42 3.8 比較金奈米抗體探針和市售膠體小珠 43 3.9 質譜分析免疫沉澱雌激素受體阿爾法 (溶液中消化) 45 3.10 質譜分析免疫沉澱雌激素受體阿爾法 (膠內消化) 46 第四章 結論 68 參考文獻 70 附錄 75

    1. Wilkins, M.R., et al., From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and amino acid analysis. Biotechnology (N Y), 1996. 14(1): p. 61-5.
    2. Yates, J.R., 3rd, Mass spectrometry and the age of the proteome. J Mass Spectrom, 1998. 33(1): p. 1-19.
    3. Aebersold, R. and J.D. Watts, The need for national centers for proteomics. Nat Biotechnol, 2002. 20(7): p. 651.
    4. Wasinger, V.C. and G.L. Corthals, Proteomic tools for biomedicine. J Chromatogr B Analyt Technol Biomed Life Sci, 2002. 771(1-2): p. 33-48.
    5. Steen, H. and A. Pandey, Proteomics goes quantitative: measuring protein abundance. Trends Biotechnol, 2002. 20(9): p. 361-4.
    6. Hsu, J.L., et al., Stable-isotope dimethyl labeling for quantitative proteomics. Analytical Chemistry, 2003. 75(24): p. 6843-6852.
    7. Boersema, P.J., et al., Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nature Protocols, 2009. 4(4): p. 484-494.
    8. Arnold, G.J. and T. Frohlich, Proteome research based on modern liquid chromatography - tandem mass spectrometry: separation, identification and quantification. Journal of Neural Transmission, 2006. 113(8): p. 973-994.
    9. Chen, C.H., Review of a current role of mass spectrometry for proteome research. Analytica Chimica Acta, 2008. 624(1): p. 16-36.
    10. Liu, J., et al., [Application of mass spectrometry in the proteome research]. Wei Sheng Yan Jiu, 2003. 32(3): p. 257-60.
    11. Sickmann, A., M. Mreyen, and H.E. Meyer, Mass spectrometry--a key technology in proteome research. Adv Biochem Eng Biotechnol, 2003. 83: p. 141-76.
    12. Ashcroft, A.E., Protein and peptide identification: the role of mass spectrometry in proteomics. Natural Product Reports, 2003. 20(2): p. 202-215.
    13. Wiese, S., Protein labeling by iTRAQ: A new tool for quantitative mass spectrometry in proteome research (vol 7, pg 340, 2007). Proteomics, 2007. 7(6): p. 1004-1004.
    14. Hsu, J.L., et al., Beyond quantitative proteomics: Signal enhancement of the a(1) ion as a mass tag for peptide sequencing using dimethyl labeling. Journal of Proteome Research, 2005. 4(1): p. 101-108.
    15. Britton, D.J., et al., A novel serine phosphorylation site detected in the N-terminal domain of estrogen receptor isolated from human breast cancer cells. Journal of the American Society for Mass Spectrometry, 2008. 19(5): p. 729-740.
    16. Lannigan, D.A., Estrogen receptor phosphorylation. Steroids, 2003. 68(1): p. 1-9.
    17. Blagoev, B., et al., A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling. Nature Biotechnology, 2003. 21(3): p. 315-318.
    18. von Haller, P.D., et al., The application of new software tools to quantitative protein profiling via isotope-coded affinity tag (ICAT) and tandem mass spectrometry: II. Evaluation of tandem mass spectrometry methodologies for large-scale protein analysis, and the application of statistical tools for data analysis and interpretation. Mol Cell Proteomics, 2003. 2(7): p. 428-42.
    19. Huang, Y., et al., An optimized magnetite microparticle-based phosphopeptide enrichment strategy for identifying multiple phosphorylation sites in an immunoprecipitated protein. Anal Biochem, 2011. 408(1): p. 19-31.
    20. Thingholm, T.E., et al., SIMAC (sequential elution from IMAC), a phosphoproteomics strategy for the rapid separation of monophosphorylated from multiply phosphorylated peptides. Mol Cell Proteomics, 2008. 7(4): p. 661-71.
    21. Tsai, C.F., et al., Immobilized metal affinity chromatography revisited: pH/Acid control toward high selectivity in phosphoproteomics. Journal of Proteome Research, 2008. 7(9): p. 4058-4069.
    22. Winter, D., et al., Citrate Boosts the Performance of Phosphopeptide Analysis by UPLC-ESI-MS/MS. Journal of Proteome Research, 2009. 8(1): p. 418-424.
    23. Ye, J., et al., Optimized IMAC-IMAC protocol for phosphopeptide recovery from complex biological samples. J Proteome Res, 2010. 9(7): p. 3561-73.
    24. Wu, C.J., et al., Quantitative Phosphoproteomics Studies Using Stable Isotope Dimethyl Labeling Coupled with IMAC-HILIC-nanoLC-MS/MS for Estrogen-Induced Transcriptional Regulation. Journal of Proteome Research, 2011. 10(3): p. 1088-1097.
    25. Zhang, X., et al., Highly efficient phosphopeptide enrichment by calcium phosphate precipitation combined with subsequent IMAC enrichment. Molecular & Cellular Proteomics, 2007. 6(11): p. 2032-2042.
    26. Aryal, U.K. and A.R.S. Ross, Enrichment and analysis of phosphopeptides under different experimental conditions using titanium dioxide affinity chromatography and mass spectrometry. Rapid Communications in Mass Spectrometry, 2010. 24(2): p. 219-231.
    27. Schilling, M. and D.R. Knapp, Enrichment of phosphopeptides using biphasic immobilized metal affinity-reversed phase microcolumns. Journal of Proteome Research, 2008. 7(9): p. 4164-4172.
    28. Gronborg, M., et al., A mass spectrometry-based proteomic approach for identification of serine/threonine-phosphorylated proteins by enrichment with phospho-specific antibodies - Identification of a novel protein, Frigg, as a protein kinase A substrate. Molecular & Cellular Proteomics, 2002. 1(7): p. 517-527.
    29. Fenn, J.B., et al., Electrospray ionization for mass spectrometry of large biomolecules. Science, 1989. 246(4926): p. 64-71.
    30. Zheng, H.Y., et al., Phosphotyrosine proteomic study of interferon alpha signaling pathway using a combination of immunoprecipitation and immobilized metal affinity chromatography. Molecular & Cellular Proteomics, 2005. 4(6): p. 721-730.
    31. Mateos, A., et al., Identification of phosphorylation sites of equine beta-casein isoforms. Rapid Communications in Mass Spectrometry, 2010. 24(11): p. 1533-1542.
    32. Nakamura, T., K.T. Myint, and Y. Oda, Ethylenediaminetetraacetic acid increases identification rate of phosphoproteomics in real biological samples. J Proteome Res, 2010. 9(3): p. 1385-91.
    33. Berggard, T., S. Linse, and P. James, Methods for the detection and analysis of protein-protein interactions. Proteomics, 2007. 7(16): p. 2833-42.
    34. Phizicky, E.M. and S. Fields, Protein-protein interactions: methods for detection and analysis. Microbiol Rev, 1995. 59(1): p. 94-123.
    35. Calakos, N., et al., Protein-protein interactions contributing to the specificity of intracellular vesicular trafficking. Science, 1994. 263(5150): p. 1146-9.
    36. Formosa, T., et al., Using protein affinity chromatography to probe structure of protein machines. Methods Enzymol, 1991. 208: p. 24-45.
    37. Miller, K.G., et al., Use of actin filament and microtubule affinity chromatography to identify proteins that bind to the cytoskeleton. Methods Enzymol, 1991. 196: p. 303-19.
    38. Moresco, J.J., P.C. Carvalho, and J.R. Yates, Identifying components of protein complexes in C. elegans using co-immunoprecipitation and mass spectrometry. Journal of Proteomics, 2010. 73(11): p. 2198-2204.
    39. Anderson, N.G., Co-immunoprecipitation. Identification of interacting proteins. Methods Mol Biol, 1998. 88: p. 35-45.
    40. Song, Z., et al., A novel method for purifying bluetongue virus with high purity by co-immunoprecipitation with agarose protein A. Virol J, 2010. 7: p. 126.
    41. Schiettecatte, J., et al., Immunoprecipitation for rapid detection of macroprolactin in the form of prolactin-immunoglobulin complexes. Clinical Chemistry, 2005. 51(9): p. 1746-8.
    42. Rimler, R.B., Replacement of sodium chloride with dextran or polyethylene glycol for immunoprecipitation of lipopolysaccharide with antibodies in chicken or turkey sera. Vet Immunol Immunopathol, 1983. 4(4): p. 417-24.
    43. Xu, X.Q., et al., Synthesis of magnetic microspheres with immobilized metal ions for enrichment and direct determination of phosphopeptides by matrix-assisted laser desorption ionization mass spectrometry. Advanced Materials, 2006. 18(24): p. 3289-+.
    44. Aubin-Tam, M.E. and K. Hamad-Schifferli, Structure and function of nanoparticle-protein conjugates. Biomed Mater, 2008. 3(3): p. 034001.
    45. Li, Y., et al., Novel approach for the synthesis of Fe3O4@TiO2 core-shell microspheres and their application to the highly specific capture of phosphopeptides for MALDI-TOF MS analysis. Chemical Communications, 2008(5): p. 564-566.
    46. Li, Y., et al., Novel Fe3O4@TiO2 core-shell microspheres for selective enrichment of phosphopeptides in phosphoproteome analysis. Journal of Proteome Research, 2008. 7(6): p. 2526-2538.
    47. Thaxton, C.S., D.G. Georganopoulou, and C.A. Mirkin, Gold nanoparticle probes for the detection of nucleic acid targets. Clinica Chimica Acta, 2006. 363(1-2): p. 120-6.
    48. Lin, H.Y., C.T. Chen, and Y.C. Chen, Detection of phosphopeptides by localized surface plasma resonance of titania-coated gold nanoparticles immobilized on glass substrates. Analytical Chemistry, 2006. 78(19): p. 6873-8.
    49. Teng, C.H., et al., Gold nanoparticles as selective and concentrating probes for samples in MALDI MS analysis. Analytical Chemistry, 2004. 76(15): p. 4337-42.

    無法下載圖示 校內:2021-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE