簡易檢索 / 詳目顯示

研究生: 李世詮
Lee, Shih-Chang
論文名稱: 鑽鑿作業產生之振動與粉塵之相關性探討
Investigating the relationship between vibrations and dust emissions during the concrete drilling process
指導教授: 蔡朋枝
Tsai, Perng-Jy
學位類別: 碩士
Master
系所名稱: 醫學院 - 環境醫學研究所
Department of Environmental and Occupational Health
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 71
中文關鍵詞: 混凝土鑽鑿、總粉塵濃度、預測模式、粉塵粒徑分佈、振動
外文關鍵詞: partical size distribution, predict model, total dust concentration, vibration, concrete drilling
相關次數: 點閱:74下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究模擬營建工地混凝土鑽鑿作業,針對五種鑽鑿轉速 (265, 321, 405, 480 & 587 rpm) 及不同大小之三種鑽頭尺寸 (16.0, 28.5 & 37.2 mm),調查其粉塵逸散及振動變化之情形,並評估利用振動量測 (包含三軸向加速度) 替代粉塵採樣之可行性。擬針對不同測試條件 (包括五種鑽鑿轉速及三種鑽頭尺寸)利用定點採樣方法同步進行粉塵即時樣本 (APS)、粉塵累積樣本 (Marple cascade impactor) 及振動頻譜分析採樣 (SA27)。將所得之振動位準資料轉為振動力,建立振動力與粉塵即時樣本之預測模式,並利用粉塵累積樣本進行模式驗證。結果顯示:(1) 三軸向振動加速度(包含x軸、y軸、z軸)在固定鑽頭大小 (16.0 mm) 及試體強度 (4000 psi) 下,不同鑽鑿轉速測試後發現,各軸向之振動加速度(m/s2)似乎有隨著轉速增加而增加的情形。而在固定鑽鑿轉速 (587 rpm) 及試體強度 (4000 psi) 下,不同鑽頭大小測試後亦發現,僅有Y軸向之加速度(m/s2)似乎有隨著鑽頭尺寸增加而增加。(2) 各軸向之振動力(newton)在不同鑽鑿轉速測試下,各軸向之振動力 (newton) 皆有隨轉速增加而增加的情形。而在不同鑽頭大小測試下,各軸向之振動力 (newton) 皆有隨鑽投尺寸增加而增加的情形。(3) 總粉塵量與三種健康相關粉塵(可吸入性、胸腔性、可呼吸性)在不同鑽鑿轉速測試下,總粉塵量與三種健康相關粉塵(可吸入性、胸腔性、可呼吸性)皆有隨著轉速增加有增加的情形。且在不同鑽頭大小測試下,各種粉塵並沒有增加之趨勢。(4) 在水平力 (X軸、Y軸) 與垂直力 (Z軸) 所建立的預測模式,與總粉塵以及三種健康相關粉塵(可吸入性、胸腔性、可呼吸性)有較良好的相關性 (r2=0.600~0.553)。(5) 將累積樣本的振動資料代入模式驗證時,發現較Marple cascade impactor所採集之粉塵濃度要高 (量測值/預測值=0.66~0.74),推測可能因Marple cascade impactor 在採集氣膠時有較高的吸入效率所導致。經過校正Marple cascade impactor後本預測模式可達到較好的預測效果(量測值/預測值=0.74~0.90)。因此本研究結果顯示以振動預測粉塵逸散應屬可行。在與本研究不同的環境下,可以本模式之方法建立適合的粉塵逸散預測模式,以提供作業場所粉塵逸散的指標。

    This study simulate concrete drilling operations of the construction industry in the lab in order to investigate the associations between the emissions of dusts and vibrations under different operating conditions (including 5 drilling speeds of 265, 321, 405, 480 & 587 rpm and three driller sizes of 16.0, 28.5 & 37.2 mm) and to evaluate if the vibration measurements (including three-dimensional of acceleration level) could serve as an surrogate for dust samplings. Static samplings were conducted to assess vibration acceleration frequency spectrums, real time and cumulative dust concentrations (including particle size distributions).The results show:(1) The acceleration of three-axes vibration (including X axis, Y axis, Z axis), under the same drill bit (16.0 mm), concrete strength (4000 psi) and testing different drilling rotation rate, increase with the increasing driller speeds. The acceleration of three-axes vibration ,under the same drilling rate (587 rpm), concrete strength (4000 psi) and testing different drill bits, have no relationship with the size of drill bit. (2) The force of three-axes vibration, testing different drilling rotation rate, increase with the increasing driller speeds. The force of three-axes vibration, testing different drill bits, also have a positive relationship with the size of drill bit. (3) total dust and health relate dust (inhalable、throacic、respirable), testing different drilling rotation rate, increase with the increasing driller speeds. The concentrations of total dust and health relate dust (inhalable、throacic、respirable), testing different drill bits, did not increase as the size of driller increased. (4) The predict model of horizontal force ( X axis、Y axis) and vertical force (Z axis), got high correlations with total dust and health relate dust (inhalable、throacic、respirable) concentrations (r2=0.600~0.553). (5) Using dust cumulative dates to validate the predict model, the high aspiration efficiency of Marple cascade impactor causes the over estimate(Cm/Cp=0.66~0.74). After modified the aspiration efficiency of Marple cascade impactor, the predict model got better estimate(Cm/ Cp = 0.74~0.90).The results of this study suggest that it is possible to use vibration measurements to predict total dust concentrations during drilling operations. Under different conditions, we can use the same method to develop the suitable predict models as indicator of the dust emissions at workplace.

    摘要..................................................................... I Abstract................................................................. II 誌謝..................................................................... III 總目錄................................................................... IV 表目錄................................................................... VI 圖目錄...................................................................VII 第一章、研究背景......................................................... 1 壹、緣起............................................................... 1 貳、研究目的........................................................... 1 參、研究意義與重要性................................................... 2 第二章、文獻回顧......................................................... 3 壹、振動暴露與危害..................................................... 3 一、何謂振動......................................................... 3 二、局部振動之健康危害............................................... 3 三、局部振動相關法令規範與量測....................................... 4 四、振動之暴露行業................................................... 5 五、營造作業振動危害之嚴重性......................................... 6 六、營建業振動評估存在問題........................................... 6 貳、粉塵暴露與危害..................................................... 7 一、何謂粉塵......................................................... 7 二、粉塵暴露之健康危害............................................... 7 三、粉塵之現行標準................................................... 8 四、粉塵個人採樣方法................................................. 8 五、粉塵之暴露行業................................................... 10 六、營建作業粉塵危害之嚴重性......................................... 10 參、營建業鑽鑿過程中以振動量測替代粉塵逸散之可行性評估................. 11 第三章、研究材料與方法................................................... 22 壹、研究架構........................................................... 22 貳、測試系統........................................................... 22 一、暴露腔........................................................... 22 二、鑽鑿系統......................................................... 23 參、測試系統變項 .......................................................23 一、混凝土規格 .......................................................23 二、鑽鑿機規格 .......................................................23 肆、測試條件組合 .......................................................24 伍、採樣策略與樣本分析................................................. 24 一、振動位準及振幅................................................... 24 二、粉塵累積樣本採樣................................................. 25 三、粉塵即時樣本採樣................................................. 27 四、樣本數大小 .......................................................28 第四章、研究品質控制與資料處理........................................... 33 壹、振動採樣之品質管制................................................. 33 一、採樣器........................................................... 33 二、試體破損......................................................... 33 貳、粉塵採樣之品質管制................................................. 33 一、採樣器........................................................... 33 二、試體破損......................................................... 33 參、資料處理........................................................... 33 一、環境氣膠粒徑分佈計算............................................. 33 二、總粉塵與振動力之相關性........................................... 34 肆、健康相關粉塵之預測模式建立與驗證................................... 35 一、簡單迴歸模式..................................................... 35 二、複迴歸模式 .......................................................35 第五章、結果與討論 .......................................................37 壹、振動特徵與暴露情形................................................. 37 一、轉速測試條件下振動大小變化情形................................... 37 二、鑽頭尺寸測試條件下振動大小變化情形............................... 37 三、各軸向振動力之變化情形........................................... 38 四、鑽鑿作業之容許作業時間評估....................................... 38 五、勞工白指病罹患率之推估........................................... 38 貳、粉塵逸散特徵與暴露情形............................................. 38 一、粉塵即時樣本..................................................... 39 二、粉塵累積樣本..................................................... 40 參、振動與粉塵逸散之相關性............................................. 40 肆、預測模式與驗證..................................................... 41 一、預測模式之結果................................................... 41 二、預測模式之驗證................................................... 42 第六章、結論與建議 .......................................................67 壹、結論............................................................... 67 貳、建議............................................................... 68 第七章、參考文獻......................................................... 69

    1. ACGIH. 1998. Threshold limit values and biological exposure indices. ACGIH report.
    2. Aitken R, Donaldson K. 1995. DevelopmeN and testing of size-selective personal aerosol sampling instrumeNs based on porous foam selectors. In: American Industrial Hygiene Conference and Exposition1995.
    3. Barnhart S. 1994. How to detect inorganic dust-induced lung disease. J Respir Dis 15(6):512-518.
    4. Bratveit M, Haaland I, Moen B, Malsnes A. 2003. Exposure to sulfuric acid in zinc production. Ann occup Hyg 48(2):159-170.
    5. Chan Y, Malo J. 1994. Aetiological ageNs in occupational asthma. Eur Respir J 7:346-371.
    6. Checkoway H, Heyer N, Demers P, Breslow N. 1993. Mortality among workers in the diatomaceous earth industry. Br J Ind Med 50:586-597.
    7. Cherry N, Burgess G, McNamee R, Turner S, McDonald J. 1995. Initial findings from a cohort mortality study of British pottery workers. App Occup Envirton Hyg 10:1042-1045.
    8. Cherry N, Burgess G, Turner S, McDonald J. 1997. Cohort study of staffordshire pottery workers:Ⅱ Nested case refereN analysis of lung cancer. Ann Occup Hyg 41:408-411.
    9. Costallo J, Gastellan R, Swecker G, Kullmen G. 1995. Mortality of a cohort of U.S. workers employed in the crushed stone industry,. Am J Ind Med 26:625-640.
    10. Costallo J, Graham W. 1988. VermoN granite workers' mortality study. Am J Ind Med 13:483-497.
    11. Dagle G, Wehner A, Clark M, Buschbom R. 1986. Chronic inhalation exposure of rats to quartz. .
    12. Donaldson K, Borm P. 1998. The quartz hazard: A variable eNity. Ann Occup Hyg 42:287-294.
    13. Dong D, Xu G, Sun Y, Hu P. 1995. Lung cancer among workers exposed to silica dust in Chinese refactory plaNs. . Br J Ind Med 21:69-72.
    14. El-wardany T, Gao D, Elbestawi M. 1996. Tool condition monitoring in drilling using vibration signature analysis. IN J Mach Tool Manufact 36(6):687-711.
    15. Flanagan M. 2003. Silica dust exposures during selected construction activities. AIHA Journal 63(4):458-467.
    16. Freeman C, Grossman E. 1995. Silica exposures in the United States between 1980 and 1992. Scand J work Environ health 21:47-49.
    17. Futatsuka M, Ueno T. 1985. Vibration exposure and Vibration-Induced White Finger due to chain saw operation J occup med 27:257-265.
    18. Guénel P, Højberg G, Lynge E. 1989. Cancer incidence among Danish stone workers. Scand J Work Environ Health 15:33-37.
    19. Hack M, Boillat M, Schweizer L. 1986. AssessmeN of vibration induced white finger: reliability and validity of two tests. Br J Ind Med 43(4):284-287.
    20. Hagberg M. 2002. Clinical assessmeN of musculoskeletal disorders in workers exposed to hand-arm vibration. IN Arch Occup Environ Health 75(1-2):97-105.
    21. Holland L, Wilson J, Tillery M, Smith D. 1986. Lung cancer in rats exposed to fibrogenic dusts. Cancer Research Monographs.
    22. ISO2631. 1986. ISO 2631 (Standardization IOf, ed).
    23. ISO5349. 1986. ISO 5349 (Standardization IOf, ed).
    24. ISO. 1991. Air quality-performance characteristics and related concepts for air quality measuing methods.:INernational Standards Organization.
    25. ISO. 1992. Air quality-particle size fraction definitions for health-related sampling INernational Standards Organization.
    26. ISO/DIS5349. 1979. ISO/DIS 5349 (Standardization IOf, ed).
    27. JaNunen E. 2002. A summary of methods applied to tool condition monitoring in drilling. INernational Journal of Machine Tools & Manufacture 42(9):997-1010.
    28. Jemielniak K. 1999. Commercial tool condition monitoring systems. The INernational Journal of Advanced Manufacturing Technology 15(Number 10):711-721
    29. Kenny L, Gussman R. 1997. Characterization and modelling of a family of cyclone aerosol preseparators. Jounal of aerosol science 28:677-688.
    30. Koch W, Dunkhorst W, Lodding H, Thomassen Y, Skaugset NP, Nikanovc A, et al. 2002. Evaluation of the Respicon as a personal inhalable sampler in industrial environmeNs{. 4:657-662.
    31. Matsumoto M, Yamada S, Harada N. 1979. A comparative study of vibration hazards among operatores of vibration tools in certain Industries Arch Hig Rada Toksikol 30:701-707.
    32. Maynard A. 1999. MeasuremeN of aerosol penetration through six personal thoracic samplers under calm air conditions. Journal of aerosol science 30:1227-1242.
    33. McDonald J, Burgess G, Turner S, Cherry N. 1997. Cohort study of staffordshire pottery workers:Ⅲ. lung cancer, radiographic changes, silica exposure and smoking habit. Ann Occup Hyg 41:412-414.
    34. McDonald J, Cherry N, McNamee R, Burgess G, Turner S. 1995. Preliminary analysis of proportional mortality in a cohort of British pottery workers exposed to crystalline silica. Scand J Work Environ Health 21:63-65.
    35. McLaughlin J, Jing Q, Dosemeci M, Rong C, Rexing S, Zhien W, et al. 1992. A nested case-coNrol study of lung cancer among silica exposed workers in China. Br J Ind Med 49:65-69.
    36. Merlo F, CostaNini M, Reggiardo G, Ceppi M, PuNoni R. 1991. Lung cancer risk among refractory brick workers exposed to crystalline silica: A retrospective cohort study. Epidemiology 2:299-305.
    37. NIOSH. 1989. Occupational exposure to Hand-Arm Vibration. NIOSH:89-106.
    38. Rando R, Poovey H, Mokadam D, Brisolara J, Glindmeyer H. 2005. Field performance of the RespiCoNM for size-selective sampling of Industrial wood processing dust. Journal of Occupational and EnvironmeNal Hygiene 2:219-226.
    39. Rappaport S, Goldberg M, Susi P, Herrick R. 2003. Excessive exposure to silca in the US construction industry. Annals of Occupational Hygiene 47(2):111-122.
    40. Riedel S. 1995. Consideration of grip and push forces for the assessmeN of vibration exposure. CeN Eur J Public Health 3:139-141.
    41. Rubow K, Marple V, Olin J, Mccawley M. 1987. A personal cascade impactor: design, evaluation and calibration. Am Ind Hyg Assoc J 48:532-538
    42. Snider G. 1989. Chronic obstructive pulmonary disease: risk factors, pathophysiology and pathogenesis. Annual Review of Medicine 40:411-429.
    43. Spiethoff A, Wesch H, Wegener K, Klimisch H. 1992. Te effects of thorotrast and quartz on the induction of lung tumors in rats. Health Phys 63:101-110.
    44. Starck J. 1984. High impulse acceleration levels in hand-held vibratory tools. An additional factor in the hazards associated with the hand-arm vibration syndrome. Scandinavian Journal of Work, EnvironmeN & Health 10(3):171-178.
    45. Steenland K, Brown D. 1995. Silicosis among gold miners exposure–response analysis and risk assessmeN. Am J of Public Health 85:1372-1377.
    46. Taylor W. 1974. The vibration white finger. London Academics Press Inc:21-30.
    47. Taylor W, Pelmear P, pearson J. 1975. Vibration induced white finger epidemiology, in vibration white finger in industry. Academic Press:1-13.
    48. Wasserman D, Badger D, Doyle T, Margolies L. 1974. Industrial Vibration -- An Overview. Journal of the American Society of Safety Engineers 19(6):38-43.
    49. Wiles F, Baskind E, Hessel P, Bezuidenhout B, Hnizdo E. 1992. Lung function in silicosis. INernational Archives of Occupational and EnvironmeNal Health 63:387-391.
    50. 勞工安全衛生設施規則. 2004. 勞工安全衛生設施規則第302條.
    51. 勞委會. 1997. 國內振動暴露流病普查.
    52. 勞委會. 2001. 勞工酸痛調查.

    下載圖示 校內:2007-08-07公開
    校外:2007-08-07公開
    QR CODE