| 研究生: |
鍾嘉元 Chung, Chia-Yuan |
|---|---|
| 論文名稱: |
自動編碼器於金融市場異常行為分析:以當沖交易為例 Analysis of Anomalous Behavior in Financial Markets Using Autoencoders: A Case Study on Day Trading |
| 指導教授: |
顏盟峯
Yen, Meng-Feng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 會計學系 Department of Accountancy |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 38 |
| 中文關鍵詞: | 金融資料 、時間序列 、深度學習 、異常檢測 、自動編碼器 、TimesNet |
| 外文關鍵詞: | Financial Data, Time Series, Deep Learning, Anomaly Detection, Autoencoder, TimesNet |
| 相關次數: | 點閱:130 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文聚焦於金融時間序列資料的異常檢測,並以此作為股票進出場策略的基礎。傳統的股價預測方法如LSTM模型在實際交易中容易因市場波動而頻繁觸發買賣信號,導致交易成本高昂和潛在虧損。本研究採用TimesNet模型,利用快速傅立葉轉換將一維資料轉換成二維,再經由卷積神經網路進行特徵提取,最終轉換回一維資料以保留時間和頻率等級資訊,透過這一編碼器解碼器之深度學習架構計算重構誤差以判斷是否出現異常上漲或下跌的波段。在標籤方面本研究採用了一種標記時間連續上漲或下跌趨勢的新方法,提高了模型的預測績效和交易策略的實用性。通過對19檔台灣股票的回測分析,我們發現其中有11檔股票實現了正報酬,證明了該模型具有一定的獲利能力。結果指出,TimesNet模型能夠在一定程度上預測異常交易點,搭配後續的交易策略能夠為投資者提供更加穩健的當沖方式,展示了深度學習技術在金融市場預測中的應用潛力。未來的研究將著重於擴展數據來源和豐富特徵及增加模型的複雜度,以提高預測的準確性和穩定性,進一步優化模型並結合其他技術指標和市場分析,為投資者提供更精確的交易決策參考。
This paper focuses on anomaly detection in financial time series data as a basis for stock trading long and short strategies. Traditional stock price prediction methods, such as LSTM models, are prone to frequent buy and sell signals due to market volatility in actual trading, leading to high transaction costs and potential losses. This study adopts the TimesNet model, which uses the Fast Fourier Transform to convert one-dimensional data into two-dimensional data, then employs a convolutional neural network for feature extraction, and finally transforms it back to one-dimensional data to retain time and frequency-level information. This encoder-decoder deep learning architecture calculates reconstruction errors to determine whether there are abnormal rising or falling segments. The study introduces a new method for labeling continuous rising or falling trends over time, improving the model's predictive performance and the practicality of trading strategies. Through backtesting analysis of 19 Taiwanese stocks, we found that 11 stocks achieved positive returns, demonstrating the model's profitability. The results indicate that the TimesNet model can predict abnormal trading points to a certain extent, and coupled with subsequent trading strategies, it can provide investors with a more stable day trading approach, showcasing the application potential of deep learning technology in financial market forecasting. Future research will focus on expanding data sources, enriching features, and increasing model complexity to improve prediction accuracy and stability, further optimizing the model and integrating other technical indicators and market analysis to provide more precise trading decision references for investors.
Abu-Mostafa, Y. S., & Atiya, A. F. (1996). Introduction to financial forecasting. Applied Intelligence, 6, 205-213.
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., ... & Amodei, D. (2020). Language models are few-shot learners. Advances in Neural Information Processing Systems, 33, 1877-1901.
Chen, C. W., Liu, F. C., & So, M. K. (2011). A review of threshold time series models in finance. Statistics and its Interface, 4(2), 167-181.
Caţaron, A., & Andonie, R. (2018). Transfer information energy: A quantitative indicator of information transfer between time series. Entropy, 20(5), 323.
Dertat, A. (2017). Applied Deep Learning - Part 3: Autoencoders, towards data science, retrieved from https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798.
Di Mattia, F., Galeone, P., De Simoni, M., & Ghelfi, E. (2019). A survey on GANs for anomaly detection. arXiv preprint arXiv:1906.11632.
Fischer, T., & Krauss, C. (2018). Deep learning with long short-term memory networks for financial market predictions. European Journal of Operational Research, 270(2), 654-669.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2020). Generative adversarial networks. Communications of the ACM, 63(11), 139-144.
Gu, S., Kelly, B., & Xiu, D. (2021). Autoencoder asset pricing models. Journal of Econometrics, 222(1), 429-450.
Holt, C. C. (2004). Forecasting seasonals and trends by exponentially weighted moving averages. International Journal of Forecasting, 20(1), 5-10.
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).
Hiransha, M. E. A. G., Gopalakrishnan, E. A., Menon, V. K., & Soman, K. P. (2018). NSE stock market prediction using deep-learning models. Procedia Computer Science, 132, 1351-1362.
Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114.
Liu, P., Liu, J., & Wu, K. (2020). CNN-FCM: System modeling promotes stability of deep learning in time series prediction. Knowledge-Based Systems, 203, 106081.
Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2020). The M4 Competition: 100,000 time series and 61 forecasting methods. International Journal of Forecasting, 36(1), 54-74.
Maratkhan, A., Ilyassov, I., Aitzhanov, M., Demirci, M. F., & Ozbayoglu, A. M. (2021). Deep learning-based investment strategy: technical indicator clustering and residual blocks. Soft Computing, 25(7), 5151-5161.
Nabipour, M., Nayyeri, P., Jabani, H., Shahab, S., & Mosavi, A. (2020). Predicting stock market trends using machine learning and deep learning algorithms via continuous and binary data; a comparative analysis. IEEE Access, 8, 150199-150212.
Sakurada, M., & Yairi, T. (2014, December). Anomaly detection using autoencoders with nonlinear dimensionality reduction. In Proceedings of the MLSDA 2014 2nd workshop on machine learning for sensory data analysis (pp. 4-11).
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1-9).
Selvin, S., Vinayakumar, R., Gopalakrishnan, E. A., Menon, V. K., & Soman, K. P. (2017, September). Stock price prediction using LSTM, RNN and CNN-sliding window model. In 2017 international conference on advances in computing, communications and informatics (icacci) (pp. 1643-1647). IEEE.
Silva, T. (2018). An intuitive introduction to Generative Adversarial Networks (GANs), retrieved from https://www.freecodecamp.org/news/an-intuitive-introduction-to-generative-adversarial-networks-gans-7a2264a81394/
Sezer, O. B., Gudelek, M. U., & Ozbayoglu, A. M. (2020). Financial time series forecasting with deep learning: A systematic literature review: 2005–2019. Applied Soft Computing, 90, 106181.
Wu, D., Wang, X., Su, J., Tang, B., & Wu, S. (2020). A labeling method for financial time series prediction based on trends. Entropy, 22(10), 1162.
Wu, H., Hu, T., Liu, Y., Zhou, H., Wang, J., & Long, M. (2022). Timesnet: Temporal 2d-variation modeling for general time series analysis. arXiv preprint arXiv:2210.02186.
Xu, H., Chen, W., Zhao, N., Li, Z., Bu, J., Li, Z., ... & Qiao, H. (2018, April). Unsupervised anomaly detection via variational auto-encoder for seasonal kpis in web applications. In Proceedings of the 2018 world wide web conference (pp. 187-196).
Zhao, J., Zeng, D., Liang, S., Kang, H., & Liu, Q. (2021). Prediction model for stock price trend based on recurrent neural network. Journal of Ambient Intelligence and Humanized Computing, 12, 745-753.
Zeng, Z., Kaur, R., Siddagangappa, S., Rahimi, S., Balch, T., & Veloso, M. (2023). Financial Time Series Forecasting using CNN and Transformer. arXiv preprint arXiv:2304.04912.