簡易檢索 / 詳目顯示

研究生: 吳品儒
Wu, Pin-Ru
論文名稱: 贗電容材料/還原氧化石墨烯奈米複合物之製備與特性
Fabrication and characterization of pseudocapacitor materials/reduced graphene oxide nano-hybrids
指導教授: 陳東煌
Chen, Dong-Hwang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 127
中文關鍵詞: 鎳鈷合金硫鈷鎳還原氧化石墨烯部分硫化聚吡咯氧化錳超級電容器
外文關鍵詞: nickel cobalt alloy, nickel cobalt sulfide, reduced graphene oxide, partial sulfidation, polypyrrole, manganese oxide, supercapacitor
相關次數: 點閱:154下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係有關部分硫化之鎳鈷合金/還原氧化石墨烯(Ni-Co-S/Ni-Co/rGO)與氧化錳/聚吡咯/還原氧化石墨烯(MnOx/PPy/rGO)奈米複合物之製備與超級電容器性能的探討。首先以兩步合成法製備Ni-Co-S/Ni-Co/rGO奈米複合物,因鎳鈷合金的高導電性可幫助法拉第氧化還原反應中之電子的傳遞,而硫鈷鎳良好的贗電容特性則可提供較高的電容值,故擬藉由鎳鈷合金的部分硫化達到改善電容性能的目的。此外,還原氧化石墨烯的存在除了可幫助鎳鈷合金粒子的分散外,其本身亦具有電雙層電容之特性。結果顯示,將鎳鈷合金/還原氧化石墨烯部分硫化後確實可因硫鈷鎳良好的贗電容特性而提升其電容性能,但當硫化程度過高時,電容性能反而會因複合物導電性的下降而變差。其次,在過錳酸鉀、氧化石墨烯與酸催化劑的存在下,以室溫下反應1小時、180 oC下水熱反應30分鐘、及180 oC下微波輔助反應30分鐘等三種不同方式,使吡咯氧化聚合並一步合成氧化錳/聚吡咯/還原氧化石墨烯奈米複合物。結果顯示,相較於其它兩種合成方法,以微波輔助法所得之聚吡咯/氧化錳/還原氧化石墨烯具有最佳之電容表現。此外,藉由真空過濾法可製得以聚吡咯/氧化錳/還原氧化石墨烯為基底之薄膜,具有作為可撓式超級電容器電極材料之潛力。

    This thesis concerns the fabrication and supercapacitor performance of nickel cobalt alloy with partial sulfidation/reduced graphene oxide (Ni-Co-S/Ni-Co/rGO) and manganese oxide/polypyrrole/reduced graphene oxide (MnOx/PPy/rGO) nano-hybrids. Firstly, Ni-Co-S/Ni-Co/rGO nano-hybrid was synthesized via a two-step method. Because the highly conductivity of Ni-Co alloy could increase the electron transport rate during faradic redox reaction and the good pseudocapacitor property of Ni-Co-S could provide a higher capacitance, it was attempted to improve the capacitor performance by the appropriate partial sulfidation of Ni-Co alloy. Furthermore, rGO was used as the substrate not only for the dispersion of Ni-Co alloy particles but also owing to its electrical double layer capacitance. The results revealed that the partial sulfidation of Ni-Co/rGO indeed could enhance the capacitor performance due to the good pseudocapacitor property of Ni-Co-S. However, the excess sulfidation might decrease the conductivity of hybrid and hence lead to the poorer capacitor performance. Secondly, MnOx/PPy/rGO nano-hybrid was synthesized by a facile one-step in situ polymerization process of pyrrole in the presence of potassium permanganate, graphene oxide, and acid catalyst under three different conditions: room temperature reaction for 1 h, hydrothermal reaction at 180ºC for 30 min, and microwave-assisted reaction at 180ºC for 5 min. The result revealed that MnOx/PPy/rGO nano-hybrid obtained via the microwave-assisted reaction exhibited the largest capacitance as compared to those obtained by the other two routes. In addition, MnOx/PPy/rGO hybrid-based thin film could be prepared by vacuum filtration, which has potential as the electrode material for flexible supercapacitors.

    中文摘要 I Abstract II Extended abstract IV 誌謝 VIII 目錄 IX 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1.1 石墨烯奈米複合材料 1 1.1.1 石墨烯之簡介 1 1.1.2 石墨烯之應用 3 1.1.3 石墨烯之製備 6 1.1.4 還原氧化石墨烯之簡介 9 1.2 超級電容器之簡介 11 1.2.1 超級電容器之簡介 11 1.2.2 超級電容器之儲能原理 14 1.2.3 超級電容器之電解質發展 17 1.2.4 超級電容器之電極材料發展 19 1.3 硫鈷鎳/還原氧化石墨烯於超級電容器之應用 28 1.4聚吡咯/氧化錳/還原氧化石墨烯於超級電容器之應用 30 1.5 研究動機 32 第二章 基礎理論 34 2.1 化學還原法 34 2.2 水熱合成法 36 2.3 微波輔助合成法 39 2.4 循環伏安法理論 41 2.5 定電流充放電原理 43 2.6 電化學交流阻抗原理 44 第三章 實驗 48 3.1 實驗藥品、儀器與材料 48 3.1.1 實驗藥品 48 3.1.2 實驗儀器 50 3.1.3 實驗材料 53 3.2 材料製備 54 3.2.1 氧化石墨之製備 54 3.2.2 鎳鈷合金/還原氧化石墨烯奈米複合物之製備 56 3.2.3 部分硫化之鎳鈷合金/還原氧化石墨烯奈米複合物之製備 58 3.2.4 部分硫化之鎳鈷合金/還原氧化石墨烯複合電極之製備 61 3.2.5 聚吡咯/氧化錳/還原氧化石墨烯複合物之製備 63 3.2.6 聚吡咯/氧化錳/還原氧化石墨烯薄膜之製備 64 3.3 性質測定與分析 65 3.4 電化學測試 68 3.4.1 部分硫化之鎳鈷合金/還原氧化石墨烯複合電極 68 3.4.2 聚吡咯/氧化錳/還原氧化石墨烯複合電極 68 第四章 結果與討論 70 4.1 部分硫化之鎳鈷合金/還原氧化石墨烯之特性與應用 70 4.1.1 部分硫化之鎳鈷合金/還原氧化石墨烯之鑑定 70 4.1.2 部分硫化之鎳鈷合金/還原氧化石墨烯之電容特性 82 4.2 聚吡咯/氧化錳/還原氧化石墨烯之特性與應用 93 4.2.1 聚吡咯/氧化錳/還原氧化石墨烯之鑑定 93 4.2.2 聚吡咯/氧化錳/還原氧化石墨烯之電容特性 105 第五章 結論 108 參考文獻 109

    [1] 洪偉修, 世界上最薄的材料-石墨烯, 98 康熹化學報報, 980047, 1-5, 1999.
    [2] F.A. Lindemann, The calculation of molecular natural frequencies, Z. Phys., 11, 609-612, 1910.
    [3] A.K. Geim, K.S. Novoselov, The rise of graphene, Nat. Mater., 6, 183-191, 2007.
    [4] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science, 306, 666-669, 2004.
    [5] J.H. Chen, C. Jang, S.D. Xiao, M. Ishigami, M.S. Fuhrer, Intrinsic and extrinsic performance limits of graphene devices on SiO2, Nat. Nanotechnol., 3, 206-209, 2008.
    [6] T. Durkop, S.A. Getty, E. Cobas, M.S. Fuhrer, Extraordinary mobility in semiconducting carbon nanotubes, Nano Lett., 4, 35-39, 2004.
    [7] A.K. Geim, Graphene: status and prospects, Science, 324, 1530-1534, 2009.
    [8] C. Lee, X.D. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 321, 385-388, 2008.
    [9] M. Pumera, Electrochemistry of graphene: new horizons for sensing and energy storage, Chem. Rec., 9, 211-223, 2009.
    [10] A.A. Balandin, S. Ghosh, W.Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett., 8, 902-907, 2008.
    [11] H.L. Wang, H.S. Casalongue, Y.Y. Liang, H.J. Dai, Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials, J. Am. Chem. Soc., 132, 7472-7477, 2010.
    [12] P.K. Ang, W. Chen, A.T.S. Wee, K.P. Loh, Solution-gated epitaxial graphene as pH sensor, J. Am. Chem. Soc., 130, 14392-14393, 2008.
    [13] G.M. Scheuermann, L. Rumi, P. Steurer, W. Bannwarth, R. Mülhaupt, Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the suzuki−miyaura coupling reaction, J. Am. Chem. Soc., 131, 8262-8270, 2009.
    [14] A.C. Ferrari, F. Bonaccorso, V. Fal'ko, K.S. Novoselov, S. Roche, P. Boggild, S. Borini, F.H.L. Koppens, V. Palermo, N. Pugno, J.A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J.N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G.F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z.P. Sun, C. Galiotis, A.N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G.M. Williams, B.H. Hong, J.H. Ahn, J.M. Kim, H. Zirath, B.J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I.A. Kinloch, T. Seyller, E. Quesnel, X.L. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S.R.T. Neil, Q. Tannock, T. Lofwander, J. Kinaret, Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, Nanoscale, 7, 4598-4810, 2015.
    [15] F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics, Nat. Photonics, 4, 611-622, 2010.
    [16] D.A.C. Brownson, D.K. Kampouris, C.E. Banks, An overview of graphene in energy production and storage applications, J. Power Sources, 196, 4873-4885, 2011.
    [17] S. Han, D.Q. Wu, S. Li, F. Zhang, X.L. Feng, Graphene: a two-dimensional platform for lithium storage, Small, 9, 1173-1187, 2013.
    [18] C.C. Huang, C. Li, G.Q. Shi, Graphene based catalysts, Energy Environ. Sci., 5, 8848-8868, 2012.
    [19] Y. Huang, J.J. Liang, Y.S. Chen, An overview of the applications of graphene-based materials in supercapacitors, Small, 8, 1805-1834, 2012.
    [20] K.C. Kemp, H. Seema, M. Saleh, N.H. Le, K. Mahesh, V. Chandra, K.S. Kim, Environmental applications using graphene composites: water remediation and gas adsorption, Nanoscale, 5, 3149-3171, 2013.
    [21] Y.Y. Shao, J. Wang, H. Wu, J. Liu, I.A. Aksay, Y.H. Lin, Graphene based electrochemical sensors and biosensors: a review, Electroanalysis, 22, 1027-1036, 2010.
    [22] S. Sharma, B.G. Pollet, Support materials for PEMFC and DMFC electrocatalysts-a review, J. Power Sources, 208, 96-119, 2012.
    [23] K. Yang, L.Z. Feng, X.Z. Shi, Z. Liu, Nano-graphene in biomedicine: theranostic applications, Chem. Soc. Rev., 42, 530-547, 2013.
    [24] N. Zhang, Y.H. Zhang, Y.J. Xu, Recent progress on graphene-based photocatalysts: current status and future perspectives, Nanoscale, 4, 5792-5813, 2012.
    [25] K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature, 457, 706-710, 2009.
    [26] X.S. Li, W.W. Cai, J.H. An, S. Kim, J. Nah, D.X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, Large-area synthesis of high-quality and uniform graphene films on copper foils, Science, 324, 1312-1314, 2009.
    [27] P. Sutter, Epitaxial graphene: how silicon leaves the scene, Nat. Mater., 8, 171-172, 2009.
    [28] B.C. Brodie, On the atomic weight of graphite, Phil. Trans. R. Soc., 149, 249-259, 1859.
    [29] W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc., 80, 1339-1339, 1958.
    [30] Y.X. Xu, H. Bai, G.W. Lu, C. Li, G.Q. Shi, Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets, J. Am. Chem. Soc., 130, 5856-5857, 2008.
    [31] S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 45, 1558-1565, 2007.
    [32] V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, S. Seal, Graphene based materials: past, present and future, Prog. Mater. Sci., 56, 1178-1271, 2011.
    [33] O.C. Compton, S.T. Nguyen, Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials, Small, 6, 711-723, 2010.
    [34] 蘇清源, 石墨烯氧化物之特性與應用前景, 物理雙月刊, 33, 163-167, 2011.
    [35] A. Bagri, C. Mattevi, M. Acik, Y.J. Chabal, M. Chhowalla, V.B. Shenoy, Structural evolution during the reduction of chemically derived graphene oxide, Nat. Chem., 2, 581-587, 2010.
    [36] X. Huang, X.Y. Qi, F. Boey, H. Zhang, Graphene-based composites, Chem. Soc. Rev., 41, 666-686, 2012.
    [37] Y. Zhang, H. Feng, X.B. Wu, L.Z. Wang, A.Q. Zhang, T.C. Xia, H.C. Dong, X.F. Li, L.S. Zhang, Progress of electrochemical capacitor electrode materials: a review, Int. J. Hydrogen Energy, 34, 4889-4899, 2009.
    [38] G.H. Yu, X. Xie, L.J. Pan, Z.N. Bao, Y. Cui, Hybrid nanostructured materials for high-performance electrochemical capacitors, Nano Energy, 2, 213-234, 2013.
    [39] J.R. Miller, P. Simon, Materials science - electrochemical capacitors for energy management, Science, 321, 651-652, 2008.
    [40] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mater., 7, 845-854, 2008.
    [41] P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin?, Science, 343, 1210-1211, 2014.
    [42] M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors?, Chem. Rev., 104, 4245-4269, 2004.
    [43] S. Bose, T. Kuila, A.K. Mishra, R. Rajasekar, N.H. Kim, J.H. Lee, Carbon-based nanostructured materials and their composites as supercapacitor electrodes, J. Mater. Chem., 22, 767-784, 2012.
    [44] J.W. Long, D. Belanger, T. Brousse, W. Sugimoto, M.B. Sassin, O. Crosnier, Asymmetric electrochemical capacitors-stretching the limits of aqueous electrolytes, MRS. Bull., 36, 513-522, 2011.
    [45] Z.J. Fan, J. Yan, T. Wei, L.J. Zhi, G.Q. Ning, T.Y. Li, F. Wei, Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density, Adv. Funct. Mater., 21, 2366-2375, 2011.
    [46] 鄧名傑, 陳錦明, 超級電池超級能耐, 科學發展, 514, 56-61, 2015.
    [47] A.D. Jagadale, G.Q. Guan, X.M. Li, X. Du, X.L. Ma, X.G. Hao, A. Abudula, Ultrathin nanoflakes of cobalt-manganese layered double hydroxide with high reversibility for asymmetric supercapacitor, J. Power Sources, 306, 526-534, 2016.
    [48] G.P. Wang, L. Zhang, J.J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chem. Soc. Rev., 41, 797-828, 2012.
    [49] X.H. Lu, M.H. Yu, G.M. Wang, Y.X. Tong, Y. Li, Flexible solid-state supercapacitors: design, fabrication and applications, Energy Environ. Sci., 7, 2160-2181, 2014.
    [50] C.Z. Meng, C.H. Liu, L.Z. Chen, C.H. Hu, S.S. Fan, Highly flexible and all-solid-state paper like polymer supercapacitors, Nano Lett., 10, 4025-4031, 2010.
    [51] L.L. Zhang, R. Zhou, X.S. Zhao, Graphene-based materials as supercapacitor electrodes, J. Mater. Chem., 20, 5983-5992, 2010.
    [52] A.G. Pandolfo, A.F. Hollenkamp, Carbon properties and their role in supercapacitors, J. Power Sources, 157, 11-27, 2006.
    [53] C.G. Liu, Z.N. Yu, D. Neff, A. Zhamu, B.Z. Jang, Graphene-based supercapacitor with an ultrahigh energy density, Nano Lett., 10, 4863-4868, 2010.
    [54] N. Xiao, H.T. Tan, J.X. Zhu, L.P. Tan, X.H. Rui, X.C. Dong, Q.Y. Yan, High-performance supercapacitor electrodes based on graphene achieved by thermal treatment with the aid of nitric acid, ACS Appl. Mater. Interfaces, 5, 9656-9662, 2013.
    [55] J.H. Lee, N. Park, B.G. Kim, D.S. Jung, K. Im, J. Hur, J.W. Choi, Restacking-inhibited 3D reduced graphene oxide for high performance supercapacitor electrodes, ACS Nano, 7, 9366-9374, 2013.
    [56] Y.C. Bai, R.B. Rakhi, W. Chen, H.N. Alshareef, Effect of pH-induced chemical modification of hydrothermally reduced graphene oxide on supercapacitor performance, J. Power Sources, 233, 313-319, 2013.
    [57] P. Chen, J.J. Yang, S.S. Li, Z. Wang, T.Y. Xiao, Y.H. Qian, S.H. Yu, Hydrothermal synthesis of macroscopic nitrogen-doped graphene hydrogels for ultrafast supercapacitor, Nano Energy, 2, 249-256, 2013.
    [58] J. Han, L.L. Zhang, S. Lee, J. Oh, K.S. Lee, J.R. Potts, J.Y. Ji, X. Zhao, R.S. Ruoff, S. Park, Generation of B-doped graphene nanoplatelets using a solution process and their supercapacitor applications, ACS Nano, 7, 19-26, 2013.
    [59] J.N. Hao, Y.Q. Liao, Y.Y. Zhong, D. Shu, C. He, S.T. Guo, Y.L. Huang, J. Zhong, L.L. Hu, Three-dimensional graphene layers prepared by a gas-foaming method for supercapacitor applications, Carbon, 94, 879-887, 2015.
    [60] E. Frackowiak, V. Khomenko, K. Jurewicz, K. Lota, F. Beguin, Supercapacitors based on conducting polymers/nanotubes composites, J. Power Sources, 153, 413-418, 2006.
    [61] R. McNeill, R. Siudak, J.H. Wardlaw, D.E. Weiss, Electronic conduction in polymers. I. The chemical structure of polypyrrole, Aust. J. Chem., 16, 1056-1075, 1963.
    [62] G.A. Snook, P. Kao, A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes, J. Power Sources, 196, 1-12, 2011.
    [63] Y. Huang, H. Li, Z. Wang, M. Zhu, Z. Pei, Q. Xue, Y. Huang, C. Zhi, Nanostructured polypyrrole as a flexible electrode material of supercapacitor, Nano Energy, 22, 422-438, 2016.
    [64] K. Wang, H.P. Wu, Y.N. Meng, Z.X. Wei, Conducting polymer nanowire arrays for high performance supercapacitors, Small, 10, 14-31, 2014.
    [65] Y. Liu, Y. Zhang, G.H. Ma, Z. Wang, K.Y. Liu, H.T. Liu, Ethylene glycol reduced graphene oxide/polypyrrole composite for supercapacitor, Electrochim. Acta, 88, 519-525, 2013.
    [66] C.D. Lokhande, D.P. Dubal, O.S. Joo, Metal oxide thin film based supercapacitors, Curr. Appl. Phys., 11, 255-270, 2011.
    [67] B.O. Park, C.D. Lokhande, H.S. Park, K.D. Jung, O.S. Joo, Performance of supercapacitor with electrodeposited ruthenium oxide film electrodes - effect of film thickness, J. Power Sources, 134, 148-152, 2004.
    [68] X.Y. Gu, Y. Yang, Y. Hu, M. Hu, J. Huang, C.Y. Wang, Facile fabrication of graphene-polypyrrole-Mn composites as high-performance electrodes for capacitive deionization, J. Mater. Chem. A, 3, 5866-5874, 2015.
    [69] Y.C. Hsieh, K.T. Lee, Y.P. Lin, N.L. Wu, S.W. Donne, Investigation on capacity fading of aqueous MnO2·nH2O electrochemical capacitor, J. Power Sources, 177, 660-664, 2008.
    [70] J.G. Wen, X.Y. Ruan, Z.T. Zhou, Preparation and electrochemical performance of novel ruthenium-manganese oxide electrode materials for electrochemical capacitors, J. Phys. Chem. Solids, 70, 816-820, 2009.
    [71] D.V. Leontyeva, I.N. Leontyev, M.V. Avramenko, Y.I. Yuzyuk, Y.A. Kukushkina, N.V. Smirnova, Electrochemical dispergation as a simple and effective technique toward preparation of NiO based nanocomposite for supercapacitor application, Electrochim. Acta, 114, 356-362, 2013.
    [72] Z. Fan, J.H. Chen, K.Z. Cui, F. Sun, Y. Xu, Y.F. Kuang, Preparation and capacitive properties of cobalt-nickel oxides/carbon nanotube composites, Electrochim. Acta, 52, 2959-2965, 2007.
    [73] J.W. Xiao, S.H. Yang, Sequential crystallization of sea urchin-like bimetallic (Ni, Co) carbonate hydroxide and its morphology conserved conversion to porous NiCo2O4 spinel for pseudocapacitors, RSC Adv., 1, 588-595, 2011.
    [74] S.K. Mondal, N. Munichandraiah, Anodic deposition of porous RuO2 on stainless steel for supercapacitor studies at high current densities, J. Power Sources, 175, 657-663, 2008.
    [75] U.M. Patil, S.B. Kulkarni, V.S. Jamadade, C.D. Lokhande, Chemically synthesized hydrous RuO2 thin films for supercapacitor application, J. Alloy. Compd., 509, 1677-1682, 2011.
    [76] P.R. Jadhav, M.P. Suryawanshi, D.S. Dalavi, D.S. Patil, E.A. Jo, S.S. Kolekar, A.A. Wali, M.M. Karanjkar, J.H. Kim, P.S. Patil, Design and electro-synthesis of 3-D nanofibers of MnO2 thin films and their application in high performance supercapacitor, Electrochim. Acta, 176, 523-532, 2015.
    [77] X. Zhang, P. Yu, H.T. Zhang, D.C. Zhang, X.Z. Sun, Y.W. Ma, Rapid hydrothermal synthesis of hierarchical nanostructures assembled from ultrathin birnessite-type MnO2 nanosheets for supercapacitor applications, Electrochim. Acta, 89, 523-529, 2013.
    [78] G.F. Cai, X. Wang, M.Q. Cui, P. Darmawan, J.X. Wang, A.L.S. Eh, P.S. Lee, Electrochromo-supercapacitor based on direct growth of NiO nanoparticles, Nano Energy, 12, 258-267, 2015.
    [79] M.M. Liu, J. Chang, J. Sun, L. Gao, Synthesis of porous NiO using NaBH4 dissolved in ethylene glycol as precipitant for high-performance supercapacitor, Electrochim. Acta, 107, 9-15, 2013.
    [80] S.I. Kim, J.S. Lee, H.J. Ahn, H.K. Song, J.H. Jang, Facile route to an efficient NiO supercapacitor with a three-dimensional nanonetwork morphology, ACS Appl. Mater. Interfaces, 5, 1596-1603, 2013.
    [81] X.H. Xia, J.P. Tu, Y.J. Mai, X.L. Wang, C.D. Gu, X.B. Zhao, Self-supported hydrothermal synthesized hollow Co3O4 nanowire arrays with high supercapacitor capacitance, J. Mater. Chem., 21, 9319-9325, 2011.
    [82] Y.F. Yuan, X.H. Xia, J.B. Wu, X.H. Huang, Y.B. Pei, J.L. Yang, S.Y. Guo, Hierarchically porous Co3O4 film with mesoporous walls prepared via liquid crystalline template for supercapacitor application, Electrochem. Commun., 13, 1123-1126, 2011.
    [83] C. Feng, J.F. Zhang, Y. He, C. Zhong, W.B. Hu, L. Liu, Y.D. Deng, Sub-3 nm Co3O4 nanofilms with enhanced supercapacitor properties, ACS Nano, 9, 1730-1739, 2015.
    [84] L. Wang, X.X. Zhang, S.S. Wang, Y.H. Li, B. Qian, X.F. Jiang, G. Yang, Ultrasonic-assisted synthesis of amorphous Fe3O4 with a high specific surface area and improved capacitance for supercapacitor, Powder Technol., 256, 499-505, 2014.
    [85] Y. Lei, J. Li, Y.Y. Wang, L. Gu, Y.F. Chang, H.Y. Yuan, D. Xiao, Rapid microwave-assisted green synthesis of 3D hierarchical flower-shaped NiCo2O4 microsphere for high-performance supercapacitor, ACS Appl. Mater. Interfaces, 6, 1773-1780, 2014.
    [86] Y.R. Zhu, X.B. Ji, Z.P. Wu, W.X. Song, H.S. Hou, Z.B. Wu, X. He, Q.Y. Chen, C.E. Banks, Spinel NiCo2O4 for use as a high-performance supercapacitor electrode material: understanding of its electrochemical properties, J. Power Sources, 267, 888-900, 2014.
    [87] H.C. Chen, J.J. Jiang, L. Zhang, T. Qi, D.D. Xia, H.Z. Wan, Facilely synthesized porous NiCo2O4 flowerlike nanostructure for high-rate supercapacitors, J. Power Sources, 248, 28-36, 2014.
    [88] T. Wang, B. Zhao, H. Jiang, H.P. Yang, K. Zhang, M.M.F. Yuen, X.Z. Fu, R. Sun, C.P. Wong, Electro-deposition of CoNi2S4 flower-like nanosheets on 3D hierarchically porous nickel skeletons with high electrochemical capacitive performance, J. Mater. Chem. A, 3, 23035-23041, 2015.
    [89] Z.Y. Dai, X.X. Zang, J. Yang, C.C. Sun, W.L. Si, W. Huang, X.C. Dong, Template synthesis of shape-tailorable NiS2 hollow prisms as high-performance supercapacitor materials, ACS Appl. Mater. Interfaces, 7, 25396-25401, 2015.
    [90] H.C. Chen, J.J. Jiang, Y.D. Zhao, L. Zhang, D.Q. Guo, D.D. Xia, One-pot synthesis of porous nickel cobalt sulphides: tuning the composition for superior pseudocapacitance, J. Mater. Chem. A, 3, 428-437, 2015.
    [91] H.C. Chen, J.J. Jiang, L. Zhang, H.Z. Wan, T. Qi, D.D. Xia, Highly conductive NiCo2S4 urchin-like nanostructures for high-rate pseudocapacitors, Nanoscale, 5, 8879-8883, 2013.
    [92] L.Y. Lin, J.L. Liu, T.M. Liu, J.H. Hao, K.M. Ji, R. Sun, W. Zeng, Z.C. Wang, Growth-controlled NiCo2S4 nanosheet arrays with self-decorated nanoneedles for high-performance pseudocapacitors, J. Mater. Chem. A, 3, 17652-17658, 2015.
    [93] J.W. Xiao, L. Wan, S.H. Yang, F. Xiao, S. Wang, Design hierarchical electrodes with highly conductive NiCo2S4 nanotube arrays grown on carbon fiber paper for high-performance pseudocapacitors, Nano Lett., 14, 831-838, 2014.
    [94] H. Pang, C.Z. Wei, X.X. Li, G.C. Li, Y.H. Ma, S.J. Li, J. Chen, J.S. Zhang, Microwave-assisted synthesis of NiS2 nanostructures for supercapacitors and cocatalytic enhancing photocatalytic H2 production, Sci. Rep., 4, 1-8, 2014.
    [95] S.G. Liu, C.P. Mao, Y.B. Niu, F.L. Yi, J.K. Hou, S.Y. Lu, J. Jiang, M.W. Xu, C.M. Li, Facile synthesis of novel networked ultra long cobalt sulfide nanotubes and its application in supercapacitors, ACS Appl. Mater. Interfaces, 7, 25568-25573, 2015.
    [96] R. Ren, M.S. Faber, R. Dziedzic, Z.H. Wen, S. Jin, S. Mao, J.H. Chen, Metallic CoS2 nanowire electrodes for high cycling performance supercapacitors, Nanotechnology, 26, 1-8, 2015.
    [97] R. Li, S.L. Wang, J.P. Wang, Z.C. Huang, Ni3S2@CoS core-shell nano-triangular pyramid arrays on Ni foam for high-performance supercapacitors, Phys. Chem. Chem. Phys., 17, 16434-16442, 2015.
    [98] W. Zeng, G.H. Zhang, X. Wu, K. Zhang, H. Zhang, S.C. Hou, C.C. Li, T.H. Wang, H.G. Duan, Construction of hierarchical CoS nanowire@NiCo2S4 nanosheet arrays via one-step ion exchange for high-performance supercapacitors, J. Mater. Chem. A, 3, 24033-24040, 2015.
    [99] R. Ding, H. Gao, M.Y. Zhang, J. Zhang, X.T. Zhang, Controllable synthesis of Ni3-xCoxS4 nanotube arrays with different aspect ratios grown on carbon cloth for high-capacity supercapacitors, RSC Adv., 5, 48631-48637, 2015.
    [100] Q.Q. Hu, W.Q. Ma, G. Liang, H.H. Nan, X.T. Zheng, X.J. Zhang, Anion-exchange reaction synthesized CoNi2S4 nanowires for superior electrochemical performances, RSC Adv., 5, 84974-84979, 2015.
    [101] X.M. Li, Q.G. Li, Y. Wu, M.C. Rui, H.B. Zeng, Two-dimensional, porous nickel cobalt sulfide for high-performance asymmetric supercapacitors, ACS Appl. Mater. Interfaces, 7, 19316-19323, 2015.
    [102] X.Q. Cai, X.P. Shen, L.B. Ma, Z.Y. Ji, L.R. Kong, Facile synthesis of nickel-cobalt sulfide/reduced graphene oxide hybrid with enhanced capacitive performance, RSC Adv., 5, 58777-58783, 2015.
    [103] Y.H. Xiao, D.C. Su, X.Z. Wang, L.M. Zhou, S.D. Wu, F. Li, S.M. Fang, In suit growth of ultradispersed NiCo2S4 nanoparticles on graphene for asymmetric supercapacitors, Electrochim. Acta, 176, 44-50, 2015.
    [104] V.H. Nguyen, C. Lamiel, J.J. Shim, Hierarchical mesoporous graphene@Ni-Co-S arrays on nickel foam for high-performance supercapacitors, Electrochim. Acta, 161, 351-357, 2015.
    [105] X.L. Wang, X.J. Xia, L.G. Beka, W.H. Liu, X. Li, In situ growth of urchin-like NiCo2S4 hexagonal pyramid microstructures on 3D graphene nickel foam for enhanced performance of supercapacitors, RSC Adv., 6, 9446-9452, 2016.
    [106] J. Yang, C. Yu, X.M. Fan, S.X. Liang, S.F. Li, H.W. Huang, Z. Ling, C. Hao, J.S. Qiu, Electroactive edge site-enriched nickel-cobalt sulfide into graphene frameworks for high-performance asymmetric supercapacitors, Energy Environ. Sci., 9, 1299-1307, 2016.
    [107] W. Yao, H. Zhou, Y. Lu, Synthesis and property of novel MnO2@polypyrrole coaxial nanotubes as electrode material for supercapacitors, J. Power Sources, 241, 359-366, 2013.
    [108] J.Y. Tao, N.S. Liu, L.Y. Li, Y.H. Gao, Hierarchical nanostructures of polypyrrole@MnO2 composite electrodes for high performance solid-state asymmetric supercapacitors, Nanoscale, 6, 2922-2928, 2014.
    [109] G.Q. Han, Y. Liu, E.J. Kan, J. Tang, L.L. Zhang, H.H. Wang, W.H. Tang, Sandwich-structured MnO2/polypyrrole/reduced graphene oxide hybrid composites for high-performance supercapacitors, RSC Adv., 4, 9898-9904, 2014.
    [110] H.Y. Zhou, Z. Yan, X. Yang, J. Lv, L.P. Kang, Z.H. Liu, RGO/MnO2/polypyrrole ternary film electrode for supercapacitor, Mater. Chem. Phys., 177, 40-47, 2016.
    [111] Y.S. Lim, Y.P. Tan, H.N. Lim, N.M. Huang, W.T. Tan, M.A. Yarmo, C.Y. Yin, Potentiostatically deposited polypyrrole/graphene decorated nano-manganese oxide ternary film for supercapacitors, Ceram. Int., 40, 3855-3864, 2014.
    [112] T. Qin, B. Liu, Y. Wen, Z. Wang, X. Jiang, Z. Wan, S. Peng, G. Cao, D. He, Freestanding flexible graphene foams@polypyrrole@MnO2 electrodes for high-performance supercapacitors, J. Mater. Chem. A, 4, 9196-9203, 2016.
    [113] W.H. Sun, L.H. Chen, Y.B. Wang, Y.Q. Zhou, S.J. Meng, H.L. Li, Y.Q. Luo, Synthesis of highly conductive PPy/graphene/MnO2 composite using ultrasonic irradiation, Synth. React. Inorg. M., 46, 437-444, 2016.
    [114] M. Faraday, The bakerian lecture: experimental relations of gold (and other metals) to light, Phil. Trans. R. Soc., 147, 145-181, 1857.
    [115] J. Turkevich, P.C. Stevenson, J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold, Discuss. Faraday. Soc., 55-75, 1951.
    [116] D.V. Goia, E. Matijevic, Preparation of monodispersed metal particles, New J. Chem., 22, 1203-1215, 1998.
    [117] S. Somiya, R. Roy, Hydrothermal synthesis of fine oxide powders, B. Mater. Sci., 23, 453-460, 2000.
    [118] R.I. Walton, Subcritical solvothermal synthesis of condensed inorganic materials, Chem. Soc. Rev., 31, 230-238, 2002.
    [119] R.A. Laudise, Hydrothermal synthesis of crystals, Chem. Eng. News, 65, 30-43, 1987.
    [120] J.O. Eckert, C.C. HungHouston, B.L. Gersten, M.M. Lencka, R.E. Riman, Kinetics and mechanisms of hydrothermal synthesis of barium titanate, J. Am. Ceram. Soc., 79, 2929-2939, 1996.
    [121] V. Polshettiwar, R.S. Varma, Aqueous microwave chemistry: a clean and green synthetic tool for rapid drug discovery, Chem. Soc. Rev., 37, 1546-1557, 2008.
    [122] M. Nuchter, B. Ondruschka, W. Bonrath, A. Gum, Microwave assisted synthesis - a critical technology overview, Green Chem., 6, 128-141, 2004.
    [123] P. Lidstrom, J. Tierney, B. Wathey, J. Westman, Microwave assisted organic synthesis - a review, Tetrahedron, 57, 9225-9283, 2001.
    [124] J. Heinze, Cyclic voltammetry - electrochemical spectroscopy, Angew. Chem. Int. Ed. Engl., 23, 831-847, 1984.
    [125] K.T. Kawagoe, J.B. Zimmerman, R.M. Wightman, Principles of voltammetry and microelectrode surface-states, J. Neurosci. Meth., 48, 225-240, 1993.
    [126] R.S. Nicholso, Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics., Anal. Chem., 37, 1351-1355, 1965.
    [127] A. Cesar, O. Maria, F. Tanize, H. Vitor, A. Dulcineia, Biosensors for detection of low-density lipoprotein and its modified forms, InTech, Croatia, 2011.
    [128] J. Li, H.Q. Xie, Y. Li, Fabrication of graphene oxide/polypyrrole nanowire composite for high performance supercapacitor electrodes, J. Power Sources, 241, 388-395, 2013.
    [129] A.J. Bard, L.R. Faulkner, Electrochemical method fundamental and application, 2nd ed., John Wiley & Sons, New York, 2000.
    [130] M. Notarianni, J.Z. Liu, K. Vernon, N. Motta, Synthesis and applications of carbon nanomaterials for energy generation and storage, Beilstein J. Nanotechnol., 7, 149-196, 2016.
    [131] J.H. Shi, X.C. Li, G.H. He, L. Zhang, M. Li, Electrodeposition of high-capacitance 3D CoS/graphene nanosheets on nickel foam for high-performance aqueous asymmetric supercapacitors, J. Mater. Chem. A, 3, 20619-20626, 2015.
    [132] E. Barsoukov, J.R. Macdonald, Impedance spectroscopy: theory, experiment, and applications, 2nd ed., John Wiley & Sons, New Jersey, 2005.
    [133] J.F. Rubinson, Y.P. Kayinamura, Charge transport in conducting polymers: insights from impedance spectroscopy, Chem. Soc. Rev., 38, 3339-3347, 2009.
    [134] B.D. Anderson, J.B. Tracy, Nanoparticle conversion chemistry: kirkendall effect, galvanic exchange, and anion exchange, Nanoscale, 6, 12195-12216, 2014.
    [135] X.Y. Wu, S.M. Li, B. Wang, J.H. Liu, M. Yu, NiCo2S4 nanotube arrays grown on flexible nitrogen-doped carbon foams as three-dimensional binder-free integrated anodes for high-performance lithium-ion batteries, Phys. Chem. Chem. Phys., 18, 4505-4512, 2016.
    [136] M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, R. Saito, Perspectives on carbon nanotubes and graphene raman spectroscopy, Nano Lett., 10, 751-758, 2010.

    無法下載圖示 校內:2021-08-24公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE