簡易檢索 / 詳目顯示

研究生: 簡士凱
Chien, Shih-Kai
論文名稱: 應用非平衡態分子動力學於低維奈米材料熱傳導率之研究
An Investigation of the Low Dimensional Nanomaterial on the Thermal Conductivity by Non-equilibrium Molecular Dynamics Simulations
指導教授: 楊玉姿
Yang, Yue-Tzu
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 124
中文關鍵詞: 非平衡態分子動力學奈米碳管石墨烯奈米帶聲子熱傳
外文關鍵詞: non-equilibrium molecular dynamics simulation, carbon nanotubes, graphene nanoribbons, phonon heat transfer
相關次數: 點閱:77下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文採用非平衡態分子動力學模擬方法,對一維奈米碳管及石墨烯奈米帶進行熱傳導率研究。在勢能函數採用REBO勢能(reactive empirical bond-order potential)及Tersoff勢能(Tersoff potential)描述原子間的作用力。對於熱傳導係數藉由Müller-Plathe提出的方法計算。在奈米尺度下,低溫時量子效應會影響熱傳導係數的正確性,必須加以修正。為了瞭解聲子導熱的基本機制,本文詳細的分析聲子態密度在不同情況下的變化。
    研究首先分析(10,10)扶手椅型單壁奈米碳管,並指出空位缺陷的存在會降低熱傳導係數,而利用氮原子摻染於空位缺陷位置可改善熱傳導係數。此外,本文並研究不同幾何形狀及位置的氮摻染於奈米碳管的熱傳導係數。模擬結果指出奈米碳管會有非對稱性的熱輸運現象,這也就是熱整流現象,顯示出熱流在一個方向會優先輸運。而三角形分佈氮摻染所造成的非對稱性熱傳效果,遠比平行分佈氮摻染效果好。
    最後,本文研究功能性石墨烯奈米帶吸附氫原子、甲基及苯基對熱傳導率的影響。當少量的氫原子隨機附著,降低熱傳導係數的程度大於氫原子叢聚附著。隨著附著率的增加,石墨烯奈米帶的熱傳導係數顯現陡降情形。此外,官能基使得原本碳原子的sp2鍵結轉變成sp3鍵結。模擬結果指出熱傳導率下降的主因為,較高的官能基平均角動量易於旋轉無固定的sp3鍵結,降低聲子的平均自由路徑。

    The non-equilibrium molecular dynamics simulations are employed to investigate the thermal conductivity of one-dimensional carbon nanotubes (CNTs) and graphene nanoribbons (GNRs). The reactive empirical bond-order (REBO) potential and Tersoff potential are used to describe the interatomic interactions and the thermal conductivities are calculated using the Müller-Plathe approach. At the nanoscale, quantum effects influence the accuracy of the thermal conductivity at lower temperatures and should thus be corrected. In order to elucidate the underlying mechanism, we proceed with a detailed analysis of the phonon density of states under different systems.
    First, the typical armchair (10, 10) single-walled CNTs is investigated. Vacancy defects decrease the thermal conductivity whereas the substitution of nitrogen at vacancy sites improves the thermal conductivity. Furthermore, the thermal conductivity of CNTs with geometric variations of doped nitrogen is investigated. The result is found that the CNTs has asymmetric axial thermal propagation; that is, the phenomenon of thermal rectification shows that the heat transfer is preferred in one direction. The triangular nitrogen-doped has more effect on the asymmetric heat transport than does parallel nitrogen-doped.
    Finally, the thermal conductivity of GNRs functionalized by the chemical attachment of hydrogen、methyl and phenyl groups is investigated. A few hydrogen atoms randomly distributed reduces thermal conductivity more than that of cluster distribution. The GNRs exhibit a rapid drop in thermal conductivity with increasing degree of functionalization. In addition, functional group leads to conversion of carbon bonding from sp2 to sp3. The simulation results indicate that the rapid drop in thermal conductivity is a consequence of the higher angular momentum of functional groups, which rotate the unsupported sp3 bonds and thus reduce the phonon mean free paths.

    中文摘要...................................................................................................I Abstract...................................................................................................III 誌謝.........................................................................................................V 目錄.......................................................................................................VII 圖目錄....................................................................................................XI 表目錄..............................................................................................XVIII 符號說明.............................................................................................XIX 第一章 緒論.........................................................................................1 1-1 前言.........................................................................................1 1-2 奈米碳管.................................................................................3 1-3 石墨烯.....................................................................................9 1-4 研究動機與目的...................................................................12 1-5 本文架構...............................................................................13 第二章 低維微奈米尺度傳熱學理論...............................................20 2-1 固體材料傳熱機制簡述.......................................................20 2-1-1 電子導熱........................................................................21 2-1-2 光子導熱........................................................................21 2-1-3 聲子導熱........................................................................22 2-2 微奈米尺度傳熱學研究方法...............................................24 2-2-1 波茲曼傳輸方程............................................................24 2-2-2 分子動力學模擬............................................................28 2-2-3 蒙地卡羅模擬方法........................................................30 2-2-4 量子分子動力學方法....................................................30 第三章 分子動力學模擬方法...........................................................32 3-1 分子動力學基本概念...........................................................32 3-2 分子動力學系綜...................................................................33 3-3 分子作用力與勢能函數.......................................................34 3-4 運動方程式...........................................................................39 3-5 初始狀態設定.......................................................................41 3-6 系綜和Nosé-Hoover熱浴.....................................................42 3-7 週期性邊界條件...................................................................44 3-8 分子動力學熱傳導率研究方法...........................................45 3-8-1 平衡態分子動力學........................................................45 3-8-2 非平衡態分子動力學....................................................46 3-8-3 聲子態密度計算............................................................47 3-9 分子動力學熱傳導率量子修正...........................................48 3-9-1 奈米碳管熱傳導率的量子修正....................................48 3-9-2 石墨烯熱傳導率的量子修正........................................50 3-10 分子動力學模擬方法計算熱傳導率流程...........................51 第四章 (10,10)型氮摻染奈米碳管熱傳特性分析..........................59 4-1 數值模型介紹.......................................................................59 4-2 空位缺陷及氮摻染影響.......................................................61 4-3 聲子態密度分析...................................................................63 4-4 熱傳導率的量子修正...........................................................64 4-5 結論.......................................................................................65 第五章 (10,10)型氮摻染奈米碳管熱整流器熱傳特性分析...........71 5-1 數值模型介紹.......................................................................71 5-2 不同形式氮摻染影響...........................................................72 5-3 熱傳導率的量子修正...........................................................73 5-4 熱整流因子...........................................................................74 5-5 聲子態密度分析...................................................................75 5-6 結論.......................................................................................76 第六章 石墨烯吸附氫原子熱傳特性分析.......................................82 6-1 數值模型介紹.......................................................................82 6-2 熱傳導率的量子修正...........................................................83 6-3 氫原子附著率影響...............................................................83 6-4 聲子態密度分析...................................................................85 6-5 結論.......................................................................................86 第七章 官能基石墨烯熱傳特性分析...............................................92 7-1 數值模型介紹.......................................................................92 7-2 熱傳導率的量子修正...........................................................93 7-3 官能基附著率影響...............................................................94 7-4 聲子態密度分析...................................................................95 7-5 官能基旋轉影響...................................................................96 7-6 結論.......................................................................................98 第八章 結論與未來展望.................................................................108 8-1 總結.....................................................................................108 8-2 未來研究方向.....................................................................110 參考文獻...............................................................................................111 個人簡介..............................................................................................122 個人著作..............................................................................................123

    [1] Iijima, S., "Helical microtubules of graphitic carbon", Nature, 354, 56-58, 1991.
    [2] Saito, R., Dresselhaus, G. and Dresselhaus, M.S., Physical properties of carbon nanotubes, London:Imperial College Press, 1998.
    [3] Reich, S., Thomsen, C. and Maultzsch, J., Carbon nanotubes: Basic concepts and physical properties, Weinheim:Wiley-VCH, 2004.
    [4] Saito, R., Fujita, M., Dresselhaus, G. and Dresselhaus, M.S., “Electronic structure of chiral graphene tubules”, Appl. Phys. Lett., 60, 2204-2206, 1992.
    [5] Hamada, N., Sawada, S.-I. and Oshiyama, A., “New one-dimensional conductors: Graphitic microtubules”, Phys. Rev. Lett., 68, 1579-1581, 1992.
    [6] Dai, H., Wong, E.W. and Lieber, C.M., “Probing electrical transport in nanomaterials: Conductivity of individual carbon nanotubes”, Science, 272, 523-526, 1996.
    [7] Overney, G., Zhong, W. and Tomanek, D., “Structural rigidity and low-frequency vibrational-modes of long carbon tubules”, J. Phys. D, 27, 93-96, 1993.
    [8] Treacy, M.M.J., Ebbesen, T.W. and Gibson, J.M., “Exceptionally high young’s modulus observed for individual carbon nanotubes”, Nature, 381, 678-680, 1996.
    [9] Zhou, X., Zhou, J.J. and Ou-Yang, Z.-C., “Strain energy and young’s modulus of single-wall carbon nanotubes calculated from electronic energy-band theory”, Phys. rev. B, 60, 13692-13696, 2000.
    [10] Rinzler, A.G., hafner, J.H., Nikolaev, P., Nordlander, P., Colbert, D.T. and Smalley, R.E., “Unraveling nanotubes:Field emission from an atomic wire”, Science, 269, 1550-1553, 1995.
    [11] Collins, P.G. and Zettl, A., “Unique characteristics of cold cathode carbon nanotube-matrix field emitters”, Phys. Rev. B, 55, 9391-9399, 1997.
    [12] de Heer, W.A., Châelain, A. and Ugarte, D., “A carbon nanotube field-emission electron source”, Science, 270, 1179-1180, 1995.
    [13] Saito, Y., Uemura, S. and Hamaguchi, K., “Cathode ray tube lighting elements with carbon nanotube field emitters”, Appl. Phys., 37, 346-348, 1998.
    [14] Bonard, J.-M., Croci, M., Klinke, C., Kurt, R., Noury, O. and Weiss, N., “Carbon nanotube films as electron field emitters”, Carbon, 40, 1715-1728, 2002.
    [15] Suzuki, S., Watanabe, Y., Homma, Y., Fukuda, S.-Y., Heun, S. and Locatelli, A., “Work functions of individual single-walled carbon nanotubes”, Appl. Phys. Lett., 85, 127-129, 2004.
    [16] Hone, J., Whitney, M., Piskoti, C. and Zettl, A., “Thermal conductivity of single-walled carbon nanotubes”, Phys. Rev. B, 59, R2514-R2516, 1999.
    [17] Berber, S., Kwon, Y.-K. and Tomanek, D., “Unusually high thermal conductivity of carbon nanotubes”, Phys. Rev. Lett., 84, 4613-4616, 2000.
    [18] Che, J., Çagin, T. and Goddard III, W.A., “Thermal conductivity of carbon nanotubes”, Nanotechnology, 11, 65-69, 2000.
    [19] Maruyama, S., “A molecular dynamics simulation of heat conduction in finite length SWNTs”, Physica B, 323, 193-195, 2002.
    [20] Moreland, J.F., Freund, J.B. and Chen, G., “The disparate thermal conductivity of carbon nanotubes and diamond nanowires studied by atomistic simulation”, Microscale Thermophys. Eng., 8, 61-69, 2004.
    [21] Yao, Z.H., Wang, J.-S., Li, B. and Liu, G.-R., “Thermal conduction of carbon nanotubes using molecular dynamics”, Phys. Rev. B, 71, 085417, 2005.
    [22] Zhang, W. and Li, B., “Thermal conductivity of nanotubes revisited: Effects of chirality, isotope impurity, tube length, and temperature”, J. Chem. Phys., 123, 114714, 2005.
    [23] Padgett, C.W. and Brenner, D.W., “Influence of chemisorption on the thermal conductivity of single-wall carbon nanotubes”, Nano Lett., 4, 1051-1053, 2004.
    [24] Yuan, J.H. and Liew, K.M., “Effects of vacancy defect reconstruction on the elastic properties of carbon nanotubes”, Carbon, 47, 1526-1533, 2009.
    [25] Srivastave, D., Menon, M., Daraio, C., Jin, S., Sadanadan, B. and Rao, A.M., “Vacancy-mediated mechanism of nitrogen substitution in carbon nanotubes”, Phys. Rev. B, 69, 153414, 2004.
    [26] Jang, J.W., Lee, C.E., Lyu, S.C., Lee, T.J. and Lee, C.J., “Structural study of nitrogen-doping effects in bamboo-shaped multiwalled carbon nanotubes”, Appl. Phys. Lett., 84, 2877, 2004.
    [27] Rangel, E., Ruiz-Chavarria, G., Magana, L.F. and Arellano, J.S., “Hydrogen adsorption on N-decorated single wall carbon nanotubes”, Phys. Lett. A, 373, 2588-2591, 2009.
    [28] Cruz-Silva, E., López-Urías, F., Muñoz-Sandoval, E., Sumpter, B.G., Terrones, H., Charlier, J.-C., Meunier, V. and Terrones, M., “Electronic transport and mechanical properties of phosphorus- and phosphorus-nitrogen-doped carbon nanotubes”, ACS Nano, 3, 1913-1921, 2009.
    [29] Zhang, W., Zhu, Z., Wang, F., Wang, T., Sun, L. and Wang, Z., “Chirality dependence of the thermal conductivity of carbon nanotubes”, Nanotechnology, 15, 936-939, 2004.
    [30] Kordás, K., Tóth, G., Moilanen, P., Kumpumäki, M., Vähäkangas, J. and Uusimäki, A., “Chip cooling with integrated carbon nanotube microfin architectures”, Appl. Phys. Lett., 90, 123105, 2007.
    [31] Xu, Z.P. and Buehler, M.J., “Strain controlled thermomutability of single-walled carbon nanotubes”, Nanotechnology, 20, 185701, 2009.
    [32] Chang, C.W., Okawa, D., Majumder, A. and Zettl, A., “Solid-state thermal rectifier” Science, 314, 1121, 2006.
    [33] Ren, C.L., Xu, Z.J., Zhang, W., Li, Y., Zhu, Z.Y. and Huai, P., “Theoretical study of heat conduction in carbon nanotube hetero-junctions”, Phys. Lett. A, 374, 1860-1865, 2010.
    [34] Wu, G. and Li, B., “Thermal rectifiers from deformed carbon nanohorns”, J. Phys.:Condens. Matter, 20, 175211, 2008.
    [35] Wu, G. and Li, B., “Thermal rectification in carbon nanotube intramolecular junctions: Molecular dynamics calculations”, Phys. Rev. B, 76, 085424, 2007.
    [36] Geim, A.K. and Novoselov, K.S., “The rise of graphene”, Nat. Mater., 6, 183-191, 2007.
    [37] Lee, C., Wei, X., Kysar, J.W. and Hone, J., “Measurement of the elastic properties and intrinsic strength of monolayer graphene”, Science, 321, 385-388, 2008.
    [38] Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. and Firsov, A.A., “Electric field effect in atomically thin carbon films”, Science, 306, 666-669, 2004.
    [39] Wei, D., Liu, Y., Wang, Y., Zhang, H., Huang, L. and Yu, G., “Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties”, Nano Lett., 9, 1752-1758, 2009.
    [40] Wu, X., Pei, Y. and Zeng, X.C., “B2C graphene, nanotubes, and nanoribbons”, Nano Lett., 9, 1577-1582, 2009.
    [41] Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M.R. and Geim, A.K., “Fine structure constant defines visual transparency of graphene”, Science, 320, 1308, 2008.
    [42] Kim, K.S., Zhao, Y., Jang, H., Lee, S.Y., Kim, J.M., Kim, K.S., Ahn, J.-H., Kim, P., Choi, J.-Y. and Hong, B.H., “Large-scale pattern growth of graphene films for stretchable transparent electrodes”, Nature, 457, 706-710, 2009.
    [43] Wang, X., Zhi, L. and Mullen, K., “Transparent, conductive graphene electrodes for dye-sensitized solar cells”, Nano Lett., 8, 323-327, 2008.
    [44] Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, F., Miao, F. and Lau, C.N., “Superior thermal conductivity of single-layer graphene”, Nano Lett., 8, 902-907, 2008.
    [45] Ghosh, S., Calizo, I., Teweldebrhan, D., Pokatilov, E.P., Nika, D.L., Balandin, A.A., Bao, W., Miao, F. and Lau, C.N., “Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits”, Appl. Phys. Lett., 92, 151911, 2008.
    [46] Barone, V., Hod, O. and Scuseria, G.E., “Electronic structure and stability of semiconducting graphene nanoribbons”, Nano Lett., 6, 2748-2754, 2006.
    [47] Guo, Z.X., Zhang, D. and Gong, X.-G., “Thermal conductivity of graphene nanoribbons”, Appl. Phys. Lett., 95, 163103, 2009.
    [48] Lan, J., Wang, J.-S., Gan, C.K. and Chin, S.K., “Edge effects on quantum thermal transport in graphene nanoribbons: Tight-binding calculations”, Phys. Rev. B, 79, 115401, 2009.
    [49] Evans, W.J., Hu, J. and Keblinski, P., “Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: Effect of ribbon width, edge roughness, and hydrogen termination”, Appl. Phys. Lett., 96, 203112, 2010.
    [50] Berger, C., Song, Z., Li, X., Wu, X., Brown, N., Naud, C., Mayou, D., Li, T., Hass, J., Marchenkov, A.N., Conrad, E.H., First, P.N. and de Heer, W.A., “Electronic confinement and coherence in patterned epitaxial graphene”, Science, 312, 1191-1196, 2006.
    [51] Blake, P., Brimicombe, P.D., Nair, R.R., Booth, T.J., Jiang, D., Schedin, F., Ponomarenko, L.A., Morozov, S.V., Gleeson, H.F., Hill, E.W., Geim, A.K. and Novoselov, K.S., “Graphene-based liquid crystal device”, Nano Lett., 8, 1704-1708, 2008.
    [52] Si, Y. and Samulski, E.T., “Synthesis of water soluble graphene”, Nano Lett., 8, 1679-1682, 2008
    [53] de Heer, W.A., Berger, C., Wu, X.S., First, P.N., Conrad, E.H., Li, X.B., Li, T.B., Sprinkle, M., Hass, J., Sadowski, M.L., Potemski, M. and Martinez, G., “Epitaxial graphene”, Solid State Commun., 143, 92-100, 2007.
    [54] Park, S. and Ruoff, R.S., “Chemical Methods for the Production of Graphenes”, Nat. Nanotechnol., 4, 217-224, 2009.
    [55] Geng, Y., Wang, S.J. and Kim, J.-K., “Preparation of Graphite Nanoplatelets and Graphene Sheets”, J. Colloid Interface Sci., 336, 592-598, 2009.
    [56] Pei, Q.X., Zhang, Y.W. and Shenoy, V.B., “A molecular dynamics study of the mechanical properties of hydrogen functionalized graphene”, Carbon, 48, 898-904, 2010.
    [57] Ewels, C.P., Heggie, M.I. and Briddon, P.R., “Adatoms and nanoengineering of carbon”, Chem. Phys. Lett., 351, 178-182, 2002.
    [58] Ma, P.-C., Mo, S.-Y., Tang, B.-Z. and Kim, J.-K., “Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites”, Carbon, 48, 1824-1834, 2010.
    [59] Geng, Y., Li, J., Wang, S.J. and Kim, J.-K., “Amino functionalization of graphite nanoplatelet”, J. Nanosci. Nanotechnol., 8, 6238-6246, 2008.
    [60] Liu, Z.Y., He, D., Wang, Y.S., Wu, H.P. and Wang, J.A., “Solution-processable functionalized graphene in donor/acceptor-type organic photovoltaic cells”, Sol. Energy Mater. Sol. Cells, 94, 1196-1200, 2010.
    [61] Baby, T.T., Aravind, S.S.J., Arockiadoss, T., Rakhi, R.B., Ramaprabhu, S., “Metal decorated graphene nanosheets as immobilization matrix for amperometric glucose biosensor”, Sens. Actuators B, 145, 71-77, 2010.
    [62] 謝華清,奚同庚,“低維材料熱物理”,上海科學技術文獻出版社,上海,2008。
    [63] Parrot, J.E. and Stuckes, A.D., Thermal conductivity of solids, Pion, London, 1975.
    [64] Ziman, J.M., Electrons and Phonons:the Theory of Transport Phenomena in Solids, Clarendon Press, Oxford, 1960.
    [65] Allen, M.P. and Tildesley, D.J., Computer Simulation of Liquids, Clarendon Press, Oxford, 1991.
    [66] Haile, J.M., Molecular Dynamic Simulation:elementary methods, Wiley, New York, 1997.
    [67] Rapaport, D.C., The Art of Molecular Dynamics Simulation, Cambridge University Press, Cambridge, 2004.
    [68] 江建軍,繆靈,梁培,馬新國,“計算材料學-設計實踐方法”,高等教育出版社,上海,2010。
    [69] Tersoff, J., “Modeling solid-state chemistry: Interatomic potentials for multicomponent systems”, Phys. Rev. B, 39, 5566-5568, 1989.
    [70] Brenner, D.W., “Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films”, Phys. Rev. B, 42, 9458-9471, 1990.
    [71] Brenner, D.W., Shenderova, O.A., Harrison, J.A., Stuart, S.J., Ni, B. and Sinnott, S.B., “ A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons”, J. Phys.: Condens. Matter, 14, 783-802, 2002.
    [72] Matsunaga, K., Fisher, C. and Matsubara, H., “Tersoff potential parameters for simulating cubic boron carbonitrides”, Jpn. J. Appl. Phys., 39, 48-51, 2000.
    [73] Nord, J., Albe, K., Erhart, P. and Nordlund, K., “Modelling of compound semiconductors: analytical bond-order potential for gallium, nitrogen and gallium nitride”, J. Phys.: Condens. Matter, 15, 5649-5662, 2003.
    [74] Tatusya, O., Osamu, U. and Matsuhei, N., “Fundamental processes of microcrystalline silicon film growth: a molecular dynamics study”, Surf. Sci., 458, 216-228, 2000.
    [75] de Brito Mota, F., Justo, J.F. and Fazzio, A., “Hydrogen role on the properties of amorphous silicon nitride”, J. Appl. Phys., 86, 1843-1847, 1999.
    [76] Abell, G.C., “Empirical chemical pseudopotential theory of molecular and metallic bonding”, Phys. Rev. B, 31, 6184, 1985.
    [77] Gear, C.W., Numerical initial value problems in ordinary differential equations, Prentice-Hall, Englewood Cliffs, N.J., 1971.
    [78] Nosé, S., “A molecular-dynamics method for simulations in the canonical ensemble”, Mol. Phys., 52, 255-268, 1984.
    [79] Nosé, S., “A unified formulation of the constant temperature molecular dynamics method”, J. Chem. Phys., 81, 511-519, 1984.
    [80] Hoover, W.G., “Canonical dynamics equilibrium phase-space distribution”, Phys. Rev. A, 31, 1695-1697, 1985.
    [81] Rafii-Tabar, H. and Chirazib, A., “Multi-scale computational modeling of solidification phenomena”, Phys. Reports, 365, 145-249, 2002.
    [82] 張勳承,應用分子動力學於合金團簇沉積製程之研究,國立成功大學機械工程學系,2010。
    [83] Müller-Plathe, J., “A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity”, J. Chem. Phys., 206, 6082-6085, 1997.
    [84] Lukes, J.R. and Zhong, H., “Thermal conductivity of individual single-wall carbon nanotubes”, J. Heat. Transfer., 129, 705-716, 2007.
    [85] 唐大偉,王照亮,“微奈米材料和結構熱物理特性表徵”,科學出版社,北京,2010。
    [86] Jiang, J.-W., Lan, J.H., Wang, J.-S. and Li, B., “Isotopic effects on the thermal conductivity of graphene nanoribbons: Localization mechanism”, J. Appl. Phys., 107, 054314, 2010.
    [87] Dresselhaus, M.S. and Eklund, P.C., “Phonons in carbon nanotubes”, Adv. Phys., 49, 705-814, 2000.
    [88] Plimpton, S., “Fast parallel algorithms for short-range molecular dynamics”, J. Comput. Phys., 117, 1-19, 1995.
    [89] Cahill, D.G., Ford, W.K., Goodson, K.E., Mahan, G.D., Majumdar, A., Maris, H.J., Merlin, R. and Phillpot, S.R., “Nanoscale thermal transport”, J. Appl. Phys., 93, 793-818, 2003.
    [90] Alaghemandi, M., Algaer, E., Böhm, M.C. and Müller-Plathe, F., “The thermal conductivity and thermal rectification of carbon nanotubes studied using reverse non-equilibrium molecular dynamics simulations”, Nanotechnology, 20, 115704-115711, 2009.
    [91] Lide, D.R., Handbook of Chemistry and Physics, CRC, Boca Taton, FL, 2000.
    [92] Pop, E., Mann, D., Wang, Q., Goodson, K. and Dai, H.J., “Thermal Conductance of an Individual Single-Wall Carbon Nanotube above Room Temperature”, Nano Lett., 6, 96-100, 2006.
    [93] Yu, C.H., Shi, L., Yao, Z., Li, D. and Majumdar, A., “Thermal conductance and thermopower of an individual single-wall carbon nanotube”, Nano Lett., 5, 1842-1846, 2005.
    [94] Hu, J.N., Ruan, X.L. and Chen, Y.P., “Thermal conductivity and thermal rectification in graphene nanoribbons: A molecular dynamics study”, Nano Lett., 9, 2730-2735, 2009.
    [95] Yang, N., Zhang, G. and Li, B., “Carbon nanocone: A promising thermal rectifier”, Appl. Phys. Lett., 93, 243111, 2008.
    [96] Tsai, S.F., Lan, I.K. and Chen, C.L., “Molecular dynamics simulation of energetic bisphenol-A polycarbonate systems”, Comp. Theor. Polymer Science, 8, 283-289, 1998.

    下載圖示 校內:2014-08-02公開
    校外:2016-08-02公開
    QR CODE