| 研究生: |
高宗佑 Kao, Tsung-Yu |
|---|---|
| 論文名稱: |
彭佳嶼的氣溶膠來源及貢獻的季節性變化:水溶性離子與硫同位素證據 Seasonal variability of aerosol sources and contributions in Peng-Chia-Yu: Evidences from water-soluble ions and sulfur isotopic composition |
| 指導教授: |
游鎮烽
You, Chen-Feng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 氣溶膠 、硫同位素 、水溶性離子 、彭佳嶼 、季風 、沙塵暴 |
| 外文關鍵詞: | aerosol, sulfur isotopes, water-soluble ions, Peng-Chia-Yu, monsoon, dust storm |
| 相關次數: | 點閱:131 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著都市化及工業化的發展,人為活動造成的氣溶膠排放已成為大氣中主要的成分。人為排放的氣溶膠對於能見度、降雨、氣候以及人類健康造成顯著的影響。其中,硫酸鹽除了是雲的凝結核之外,也影響酸雨的形成、地表溫度及環境化學。近年來台灣地區的空氣品質受到氣溶膠的影響越趨頻繁。釐清各種氣溶膠的來源及貢獻比例將有助於改善台灣的空氣品質。汙染物以氣溶膠中的水溶性離子形式存在;硫同位素具有區分不同氣溶膠來源的特性。因地域關係,氣溶膠對彭佳嶼與北台灣的效應具有相同的影響。因此,本研究提供採集自北台灣彭佳嶼1998年一月至2000年三月期間的氣溶膠中的水溶性離子及硫同位素組成,結合逆軌跡模式分析結果,討論彭佳嶼的氣溶膠來源及其傳輸路徑,評估各來源的貢獻,並提供初步的台灣地區氣溶膠中的硫同位素資料。在超音波震盪下以超純水萃取水溶性離子,藉由陰離子交換樹脂管柱層析法來純化硫元素。本研究使用感應耦合電漿原子發射光譜儀(ICP-OES)及四極柱感應耦合電漿質譜儀(ICP-Q-MS)量測水溶性離子濃度。使用多接收器感應耦合電漿質譜儀(MC-ICP-MS)分析純化後樣品中的硫同位素組成。利用已知硫同位素組成(δ34S)的實驗室標準品Alfa-S與國際標準海水樣品IAPSO進行比對,評估本研究量測得到的δ34S資料的可信度。量測IAPSO同位素組成的精確度約在21.18 ± 0.16‰ (2SD,n=3)。水溶性離子及硫同位素組成顯示季節性的變化,反映季風對於氣溶膠來源及傳輸的影響。藉由水溶性離子及硫同位素值的特徵,可以將氣溶膠區分為以下來源:(1)燃煤釋放;(2)燃油燃燒;(3)生物性硫;(4)陸源沙塵;及(5) 海鹽等來源。利用質量平衡公式計算各來源對彭佳嶼的氣溶膠硫的貢獻比例,並討論不同季節的來源變化。受東北季風影響的秋冬季,其主要的氣溶膠來自北中國燒煤取暖的排放,約占了74.4%;燃油產生的氣體,提供約18.1%的氣溶膠;生物性來源僅占了6.5%。受西南季風影響的夏季,其主要受到北台灣地區的燃油排放,約占了75.9%;14.5%的硫來自於生物活動;中國地區的燃油排放及陸源沙塵分別占了9.1%及0.5%的比例。沙塵暴期間的氣溶膠來源則可能來自中國黃土高原中碳酸鹽礦的風化及北中國燃煤的排放。化石燃料的使用對於台灣地區的氣溶膠有很大的貢獻,因此化石燃料的減量將有助於減少氣溶膠的排放並改善空氣品質。北台灣使用的燃油,釋放氣體的硫同位素比值為+4.29‰,為台灣的氣溶膠研究提供初步的硫同位素資料。
Because of the increased industrial and urban development, anthropogenic emissions have become an important contribution to the atmospheric aerosol. Anthropogenic aerosols have greatly impacted on the visibility, rainfall, global climate and human health. Sulfate plays an important role in cloud formation as condensation nuclei. And it has great impact on acid rainfall, surface temperature and environmental chemistry. In recent years, the aerosols affected the air quality is becoming more common in Taiwan. Understanding the aerosol sources and their contributions are helpful for improving the air quality. Most of anthropogenic materials exist in the form of water-soluble (WS) fine particles. Sulfur isotopic compositions can distinguish different sources and their emission contributions. As the location of Peng-Chia-Yu (PCY) is near North Taiwan, the effect of aerosols in PCY can be regarded as that of similar trends in North Taiwan. In this study, we provide the WS ion concentrations and sulfur isotopic compositions (δ34S) in aerosol samples collected during January, 1998 to March, 2000 at PCY. Combining these results with air back trajectory analyses, we discuss the aerosol sources, transportation pathways and their contributions, as well as the preliminary study of sulfur isotopes in Taiwan.
Aerosol samples were soaked in Milli-Q water under ultra-sonication to leaching WS ions, and used the anion exchange resin column method to purifying sulfur. The WS ion concentrations were measured by inductively coupled plasma optical emission spectrometer (ICP-OES) and inductively coupled plasma quadrupole mass spectrometer (ICP-Q-MS). δ34S were determined by multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS). Sulfur isotopic determination was evaluated with δ34S-known referential materials including in-house standard Alfa-S and seawater standard IAPSO. The analytical uncertainties of δ34S in IAPSO were 21.18 ± 0.16‰ (2SD).
The observed WS ions and δ34S show seasonal variations, reflecting the monsoonal impact on aerosol sources and their transportations. Based on the WS ions and δ34S data, we can divide the different aerosol sources at PCY into: (1) coal combustions; (2) oil combustions; (3) biogenic sources; (4) terrigenous dusts; and (5) marine sea-salts. We estimate their individual contributions by using the mass balance equation and discuss the source variations during different seasons. Coal combustion for heating in North China was the main contribution of aerosol sulfate, account about 74.4%; oil combustion was the secondary source, about 18.1%; biogenic sulfate showed only small contribution (6.5%) in autumn and winter, which strongly affected by northeastern monsoon. Oil combustion derived from North Taiwan and biogenic source were the two major sources of aerosol sulfate, account about 75.9% and 14.5%, respectively. Aerosol sulfate from China oil combustion and terrigenous dust were 9.1% and 0.5%, respectively, during summer, which affected by southwestern monsoon. Aerosols collected at dust storms may came from loess carbonates in Loess Plateau and emission from coal combustion. Consumption of fossil fuels provide large contribution in atmospheric aerosol. Therefore, the reduction in the fossil fuels consumption will be helpful for improvement of the air quality in Taiwan. The released aerosol from oil combustion in Taiwan with a δ34S value of +4.29‰, provide a preliminary study of sulfur isotopes in Taiwan.
Abbatt, J. P. D., Benz, S., Cziczo, D. J., Kanji, Z., Lohmann, U. and Möhler, O. “Solid Ammonium Sulfate
Aerosols as Ice Nuclei: A Pathway for Cirrus Cloud Formation.” Science 313.5794: 1770–1773. (2006)
Alewell, C., Mitchell, M. J., Likens, G. and Krouse, R. “Assessing the Origin of Sulfate Deposition at the Hubbard Brook Experimental Forest.” J. Environ. Qual. 29: 759–767. (2000)
Alexander, B., Park, R. J., Jacob, D. J. and Gong, S. “Transition Metal-Catalyzed Oxidation of Atmospheric Sulfur: Global Implications for the Sulfur Budget.” Journal of Geophysical Research 114.D2: D02309. (2009)
Ali-Mohamed, A. Y. “Estimation of Inorganic Particulate Matter in the Atmosphere of Isa Town, Bahrain, by Dry Deposition.” Atmospheric Environment. Part B. Urban Atmosphere 25.3: 397–405. (1991)
Amiro, B. D., Sheppard, S. C., Johnston, F. L., Evenden, W. G. and Harris, D. R. “Burning Radionuclide Question: What Happens to Iodine, Cesium and Chlorine in Biomass Fires?” The Science of the total environment 187.2: 93–103. (1996)
Amrani, A., Said-Ahmad, W., Shaked, Y. and Kiene, R. P. “Sulfur Isotope Homogeneity of Oceanic DMSP and DMS.” Proceedings of the National Academy of Sciences of the United States of America 110.46: 18413–8. (2013)
Andreae, M. O. and Rosenfeld, D. “Aerosol–cloud–precipitation Interactions. Part 1. The Nature and Sources of Cloud-Active Aerosols.” Earth-Science Reviews 89.1–2: 13–41. (2008)
Arsene, C., Olariu, R. I. and Mihalopoulos, N. “Chemical Composition of Rainwater in the Northeastern Romania, Iasi Region (2003–2006).” Atmospheric Environment 41.40: 9452–9467. (2007)
Berresheim, H., Elste, T., Tremmel, H. G., Allen, A. G., Hansson, H. C., Rosman, K., Maso, M. D., Makela, J. M., Kulmala, M. and O'Dowd, C. D. “Gas-Aerosol Relationships of H2SO4 , MSA, and OH: Observations in the Coastal Marine Boundary Layer at Mace Head, Ireland.” Journal of Geophysical Research 107.D19: 8100. (2002)
Brunekreef, B. and Holgate, S. T. “Air Pollution and Health.” The Lancet 360.9341: 1233–1242. (2002)
Canfield, D. E. “Biogeochemistry of Sulfur Isotopes.” Reviews in Mineralogy and Geochemistry 43.1: 607–636. (2001)
Cao, J. J., Shen, Z. X., Chow, J. C., Watson, J. G., Lee, S. C., Tie, X. X., Ho, K. F., Wang, G. H. and Han, Y. M. “Winter and Summer PM2.5 Chemical Compositions in Fourteen Chinese Cities.” Journal of the Air & Waste Management Association (1995) 62.10: 1214–26. (2012)
Cao, J. J., Shen, Z. X., Chow, J. C., Watson, J. G., Lee, S. C., Tie, X. X., Ho, K. F., Wang, G. H. and Han, Y. M. “Winter and Summer PM 2.5 Chemical Compositions in Fourteen Chinese Cities.” Journal of the Air & Waste Management Association 62.10: 1214–1226. (2012)
Cao, J. J., Xu, H. M., Xu, Q., Chen, B. H. and Kan, H. D. “Fine Particulate Matter Constituents and Cardiopulmonary Mortality in a Heavily Polluted Chinese City.” Environmental health perspectives 120.3: 373–8. (2012)
Caron, F., Tessier, A., Kramer, J. R., Schwarcz, H. P. and Rees, C. E. “Sulfur and Oxygen Isotopes of Sulfate in Precipitation and Lakewater, Quebec, Canada.” Applied Geochemistry 1.5: 601–606. (1986)
Chabas, A. and Lefèvre, R. A. “Chemistry and Microscopy of Atmospheric Particulates at Delos (Cyclades–Greece).” Atmospheric Environment 34.2: 225–238. (2000)
Chandra, M. P., Venkata, M. S. and Reddy, S. J. “Rainwater Chemistry at a Regional Representative Urban Site: Influence of Terrestrial Sources on Ionic Composition.” Atmospheric Environment 39.6: 999–1008. (2005)
Chang, K. H., Jeng, F. T., Tsai, Y. L. and Lin, P. L. “Modeling of Long-Range Transport on Taiwan’s Acid Deposition under Different Weather Conditions.” Atmospheric Environment 34.20: 3281–3295. (2000)
Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley, J. A., Hansen, J. E. and Hofmann, D. J. “Climate Forcing by Anthropogenic Aerosols.” Science 255.5043: 423–430. (1992)
Chen, J. P., Yang, C. E. and Tsai, I. C. “Estimation of Foreign versus Domestic Contributions to Taiwan’s Air Pollution.” Atmospheric Environment 112: 9–19. (2015)
Cheng, M. C., You, C. F., Lin, F. J., Chung, C. H. and Huang, K. F. “Seasonal Variation in Long-Range Transported Dust to a Subtropical Islet Offshore Northern Taiwan: Chemical Composition and Sr Isotopic Evidence in Rainwater.” Atmospheric Environment 44.28: 3386–3393. (2010)
Cheng, M. C., You, C. F., Lin, F. J., Huang, K. F. and Chung, C. H. “Sources of Cu, Zn, Cd and Pb in Rainwater at a Subtropical Islet Offshore Northern Taiwan.” Atmospheric Environment 45.11: 1919–1928. (2011)
Cheng, M. C. and You, C. F. “Sources of Major Ions and Heavy Metals in Rainwater Associated with Typhoon Events in Southwestern Taiwan.” Journal of Geochemical Exploration 105.3: 106–116. (2010)
Cheung, H. C., Wang, T., Baumann, K. and Guo, H. “Influence of Regional Pollution Outflow on the Concentrations of Fine Particulate Matter and Visibility in the Coastal Area of Southern China.” Atmospheric Environment 39.34: 6463–6474. (2005)
Chin, M., Jacob, D. J., Gardner, G. M., Foreman-Flower, M. S., Spiro, P. A. and Savoie, D. L. “A Global Three-Dimensional Model of Tropospheric Sulfate.” Journal of Geophysical Research: Atmospheres 101.D13: 18667–18690. (1996)
Crompton, P. and Wu, Y. R. “Energy Consumption in China: Past Trends and Future Directions.” Energy Economics 27.1: 195–208. (2005)
Das, A., Chung, C. H., You, C. F. and Shen, M. L. “Application of an Improved Ion Exchange Technique for the Measurement of δ34S Values from Microgram Quantities of Sulfur by MC-ICPMS.” Journal of Analytical Atomic Spectrometry 27.12: 2088. (2012)
Ding, X. D., Li, D. W., Zheng, L. W., Bao, H. Y., Chen, H. F. and Kao, S. J. “Sulfur Geochemistry of a Lacustrine Record from Taiwan Reveals Enhanced Marine Aerosol Input during the Early Holocene.” Scientific Reports 6.1: 38989. (2016)
Eriksen, T. E., Thieden, H. I. D., Dich, J., Nilsson, K. and Nimmich, W. “Sulfur Isotope Effects. I. The Isotopic Exchange Coefficient for the Sulfur Isotopes 34S-32S in the System SO2g-HSO3-Aq at 25, 35, and 45 Degrees C.” Acta Chemica Scandinavica 26: 573–580. (1972)
Eriksen, T. E., Vikane, O., Swahn, C. C., Larsson, R., Nordén, B. and Sundbom, M. “Sulfur Isotope Effects. III. Enrichment of 34S by Chemical Exchange Between SO2g and Aqueous Solutions of SO2.” Acta Chemica Scandinavica 26: 975–979. (1972)
Fang, M., Zheng, M., Wang, F., Chim, K. S. and Kot, S. C. “The Long-Range Transport of Aerosols from Northern China to Hong Kong – a Multi-Technique Study.” Atmospheric Environment 33.11: 1803–1817. (1999)
Fukuyama, T. and Fujiwara, H. “Contribution of Asian Dust to Atmospheric Deposition of Radioactive Cesium (137Cs).” Science of The Total Environment 405.1–3: 389–395. (2008)
Gatz, D. F. “Relative Contributions of Different Sources of Urban Aerosols: Application of a New Estimation Method to Multiple Sites in Chicago.” Atmospheric Environment (1967) 9.1: 1–18. (1975)
Guha, T., Lin, C. T., Bhattacharya, S. K., Mahajan, A. S., Ou-Yang, C. F., Lan, Y. P., Hsu, S. C. and Liang, M. C. “Isotopic Ratios of Nitrate in Aerosol Samples from Mt. Lulin, a High-Altitude Station in Central Taiwan.” Atmospheric Environment 154: 53–69. (2017)
Guo, Q. J., Zhu, G. X., Strauss, H., Peters, M., Chen, T. B., Yang, J. X., Wei, R. F., Tian, L. Y. and Han, X. K. “Tracing the Sources of Sulfur in Beijing Soils with Stable Sulfur Isotopes.” Journal of Geochemical Exploration 161: 112–118. (2016)
Guo, Z. B., Li, Z. Q., Farquhar, J., Kaufman, A. J., Wu, N. P., Li, C., Dickerson, R. R. and Wang, P. C. “Identification of Sources and Formation Processes of Atmospheric Sulfate by Sulfur Isotope and Scanning Electron Microscope Measurements.” Journal of Geophysical Research 115.D7: D00K07. (2010)
Hackley, K. C. and Anderson, T. F. “Sulfur Isotopic Variations in Low-Sulfur Coals from the Rocky Mountain Region.” Geochimica et Cosmochimica Acta 50.8: 1703–1713. (1986)
Halstead, M. J. R., Cunninghame, R. G. and Hunter, K. A. “Wet Deposition of Trace Metals to a Remote Site in Fiordland, New Zealand.” Atmospheric Environment 34.4: 665–676. (2000)
Harkel, M. J. T. “The Effects of Particle-Size Distribution and Chloride Depletion of Sea-Salt Aerosols on Estimating Atmospheric Deposition at a Coastal Site.” Atmospheric Environment 31.3: 417–427. (1997)
Harris, E., Sinha, B., Hoppe, P., Crowley, J. N., Ono, S. and Foley, S. “Sulfur Isotope Fractionation during Oxidation of Sulfur Dioxide: Gas-Phase Oxidation by OH Radicals and Aqueous Oxidation by H2O2, O3 and Iron Catalysis.” Atmospheric Chemistry and Physics 12.1: 407–423. (2012)
Harris, E., Sinha, B., Hoppe, P. and Ono, S. “High-Precision Measurements of 33 S and 34S Fractionation during SO 2 Oxidation Reveal Causes of Seasonality in SO2 and Sulfate Isotopic Composition.” Environmental Science & Technology 47.21: 12174–12183. (2013)
Heaton, R. W., Rahn, K. A. and Lowenthal, D. H. “Determination of Trace Elements, Including Regional Tracers, in Rhode Island Precipitation.” Atmospheric Environment. Part A. General Topics 24.1: 147–153. (1990)
Hernández, F., Alonso-Pérez, S., Hernández-Armas, J., Cuevas, E., Karlsson, L. and Romero-Campos, P. M. “Influence of Major African Dust Intrusions on the 137Cs and 40K Activities in the Lower Atmosphere at the Island of Tenerife.” Atmospheric Environment 39.22: 4111–4118. (2005)
Ho, K. F., Lee, S. C., Chan, C. K., Yu, J. C., Chow, J. C. and Yao, X. H. “Characterization of Chemical Species in PM2.5 and PM10 Aerosols in Hong Kong.” Atmospheric Environment 37.1: 31–39. (2003)
Hoffman, E. J., Huffman, G. L., Fletcher, I. S. and Duce, R. A. “Further Consideration of Alkali and Alkaline Earth Geochemistry of Marine Aerosols: Results of a Study of Marine Aerosols Collected on Bermuda.” Atmospheric Environment (1967) 11.4 (1977): 373–377. (1977)
Hong, Y. T., Zhang, H. B. and Zhu, Y. X. “Sulfur Isotopic Characteristics of Coal in China and Sulfur Isotopic Fractionation during Coal-Burning Process.” Chinese Journal of Geochemistry 12.1: 51–59. (1993)
Hsu, S., Chenliu, S., Jeng, W., Kchou, C., Hsu, R., Huang, Y. and Chen, Y. “Lead Isotope Ratios in Ambient Aerosols from Taipei, Taiwan: Identifying Long-Range Transport of Airborne Pb from the Yangtze Delta.” Atmospheric Environment 40.28: 5393–5404. (2006)
Hsu, S. C., Liu, S. C., Jeng, W. L., Lin, F. J., Huang, Y. T., Candice Lung, S. C., Liu, T. H. and Tu, J. Y. “Variations of Cd/Pb and Zn/Pb Ratios in Taipei Aerosols Reflecting Long-Range Transport or Local Pollution Emissions.” Science of The Total Environment 347.1: 111–121. (2005)
Huang, R. J., Zhang, Y. L., Bozzetti, C., Ho, K. F., Cao, J. J., Han, Y. M., Daellenbach, K. R., Slowik, J. G., Platt, S. M., Canonaco, F., Zotter, P., Wolf, R., Pieber, S. M., Bruns, E. A., Crippa, M., Ciarelli, G., Piazzalunga, A., Schwikowski, M., Abbaszade, G., Schnelle-Kreis, J., Zimmermann, R., An, Z. S., Szidat, S., Baltensperger, U., Haddad, I. E. and Prévôt, A. S. H. “High Secondary Aerosol Contribution to Particulate Pollution during Haze Events in China.” Nature 514.7521: 218–222. (2014)
Hughes, L. S., Allen, J. O., Kleeman, M. J., Johnson, R. J., Cass, G. R., Gross, D. S., Gard, E. E., Gälli, M. E., Morrical, B. D., Fergenson, D. P., Dienes, T., Noble, C. A., Liu, D.Y., Silva, P. J. and Prather, K. A. “Size and Composition Distribution of Atmospheric Particles in Southern California.” Environmental Science & Technology 33 (20): 3506–3515. (1999)
Inomata, Y., Ohizumi, T., Take, N., Sato, K. and Nishikawa, M. “Transboundary Transport of Anthropogenic Sulfur in PM2.5 at a Coastal Site in the Sea of Japan as Studied by Sulfur Isotopic Ratio Measurement.” Science of The Total Environment 553: 617–625. (2016)
Karlsson, L., Hernandez, F., Rodríguez, S., López-Pérez, M., Hernandez-Armas, J., Alonso-Pérez, S., Cuevas, E. “Using 137Cs and 40K to Identify Natural Saharan Dust Contributions to PM10 Concentrations and Air Quality Impairment in the Canary Islands.” Atmospheric Environment 42.30: 7034–7042. (2008)
Kim, K. H. and Song, D. W. “The Concentrations of Lead in Urban and Nonurban Atmospheres of Won Ju City, Korea.” Water, Air, and Soil Pollution 98.3–4: 255–273. (1997)
Kondratiev, I. I. and Skalyga, O. R. “Atmospheric Transboundary Transport of Cesium-137 with Terrigenous Dust from Asian Deserts to the Southern Far East.” Geography and Natural Resources 32.2: 126–131. (2011)
Kong, S. F., Ji, Y. Q., Lu, B., Chen, L., Han, B., Li, Z. Y. and Bai, Z. P. “Characterization of PM10 Source Profiles for Fugitive Dust in Fushun-a City Famous for Coal.” Atmospheric Environment 45.30: 5351–5365. (2011)
Kowalczyk, G. S., Choquette, C. E. and Gordon, G. E. “Chemical Element Balances and Identification of Air Pollution Sources in Washington, D.C.” Atmospheric Environment (1967) 12.5: 1143–1153. (1978)
Kunasek, S. A., Alexander, B., Steig, E. J., Sofen, E. D., Jackson, T. L., Thiemens, M. H., McConnell, J. R., Gleason, D. J. and Amos, H. M. “Sulfate Sources and Oxidation Chemistry over the Past 230 Years from Sulfur and Oxygen Isotopes of Sulfate in a West Antarctic Ice Core.” Journal of Geophysical Research 115.D18: D18313. (2010)
Kuribayashi, M., Ohara, T., Morino, Y., Uno, I., Kurokawa, J. and Hara, H. “Long-Term Trends of Sulfur Deposition in East Asia during 1981–2005.” Atmospheric Environment 59: 461–475. (2012)
Lang, Y. C., Liu, C. Q., Li, S. L., Zhao, Z. Q. and Zhou, Z. H. “Tracing Natural and Anthropogenic Sources of Dissolved Sulfate in a Karst Region by Using Major Ion Chemistry and Stable Sulfur Isotopes.” Applied Geochemistry 26: S202–S205. (2011)
Lee, P. K. H., Brook, J. R., Dabek-Zlotorzynska, E. and Mabury, S. A. “Identification of the Major Sources Contributing to PM2.5 Observed in Toronto.” Environmental Science & Technology 37.21: 4831–4840. (2003)
Lepeule, J., Laden, F., Dockery, D. and Schwartz, J. “Chronic Exposure to Fine Particles and Mortality: An Extended Follow-up of the Harvard Six Cities Study from 1974 to 2009.” Environmental health perspectives 120.7: 965–70. (2012)
Lin, C. T., Baker, A. R., Jickells, T. D., Kelly, S. and Lesworth, T. “An Assessment of the Significance of Sulphate Sources over the Atlantic Ocean Based on Sulphur Isotope Data.” Atmospheric Environment 62: 615–621. (2012)
López-Villarrubia, E., Iñiguez, C., Peral, N., García, M. D. and Ballester, F. “Characterizing Mortality Effects of Particulate Matter Size Fractions in the Two Capital Cities of the Canary Islands.” Environmental Research 112: 129–138. (2012)
Man, C. K. and Shih, M. Y. “Identification of Sources of PM10 Aerosols in Hong Kong by Wind Trajectory Analysis.” Journal of Aerosol Science 32.10: 1213–1223. (2001)
Mandeville, C. W., Webster, J. D., Tappen, C., Taylor, B. E., Timbal, A., Sakaki, A., Hauri, E. and Bacon, C. R. “Stable Isotope and Petrologic Evidence for Open-System Degassing during the Climactic and Pre-Climactic Eruptions of Mt. Mazama, Crater Lake, Oregon.” Geochimica et Cosmochimica Acta 73.10: 2978–3012. (2009)
Maruyama, T., Ohizumi, T., Taneoka, Y., Minami, N., Fukuzaki, N., Mukai, H., Murano, K. and Kusakabe, M. “Sulfur Isotope Ratios of Coals and Oils Used in China and Japan.” NIPPON KAGAKU KAISHI 2000.1: 45–51. (2000)
Mast, M. A., Turk, J. T., Ingersoll, G. P., Clow, D. W. and Kester, C. L. “Use of Stable Sulfur Isotopes to Identify Sources of Sulfate in Rocky Mountain Snowpacks.” Atmospheric Environment 35.19: 3303–3313. (2001)
Matsumoto, K., Tanaka, H., Nagao, I. and Ishizaka, Y. “Contribution of Particulate Sulfate and Organic Carbon to Cloud Condensation Nuclei in the Marine Atmosphere.” Geophysical Research Letters 24.6: 655–658. (1997)
Maykut, N. N., Lewtas, J., Kim, E. and Larson, T. V. “Source Apportionment of PM 2.5 at an Urban IMPROVE Site in Seattle, Washington.” Environmental Science & Technology 37.22: 5135–5142. (2003)
Menut, L., Masson, O. and Bessagnet, B. “Contribution of Saharan Dust on Radionuclide Aerosol Activity Levels in Europe? The 21–22 February 2004 Case Study.” Journal of Geophysical Research 114.D16: D16202. (2009)
Mukai, H., Tanaka, A., Fujii, T., Zeng, Y. Q., Hong, Y. T., Tang, J., Guo, S., Xue, H. S., Sun, Z. L., Zhou, J. T., Xue, D. M., Zhao, Z. J., Zhai, G. H., Gu, J. L. and Zhai, P. Y. “Regional Characteristics of Sulfur and Lead Isotope Ratios in the Atmosphere at Several Chinese Urban Sites.” Environmental Science & Technology 35: 1064–1071. (2001)
Nel, A. “Atmosphere. Air Pollution-Related Illness: Effects of Particles.” Science (New York, N.Y.) 308.5723: 804–6. (2005)
Norman, A. L., Barrie, L. A., Toom-Sauntry, D., Sirois, A., Krouse, H. R., Li, S. M. and Sharma, S. “Sources of Aerosol Sulphate at Alert: Apportionment Using Stable Isotopes.” Journal of Geophysical Research: Atmospheres 104.D9: 11619–11631. (1999)
Norman, A. L., Anlauf, K., Hayden, K., Thompson, B., Brook, J. R. and Bottenheim, J. “Aerosol Sulphate and Its Oxidation on the Pacific NW Coast: S and O Isotopes in PM2.5.” Atmospheric Environment 40.15: 2676–2689. (2006)
Novák, M., Jacková, I. and Prechová, E. “Temporal Trends in the Isotope Signature of Air-Borne Sulfur in Central Europe.” Environmental science & technology 35.2: 255–60. (2001)
Nriagu, J. O., Holdway, D. A. and Coker, R. D. “Biogenic Sulfur and the Acidity of Rainfall in Remote Areas of Canada.” Science 237.4819: 1189–1192. (1987)
Ohizumi, T., Fukuzaki, N. and Kusakabe, M. “Sulfur Isotopic View on the Sources of Sulfur in Atmospheric Fallout along the Coast of the Sea of Japan.” Atmospheric Environment 31.9: 1339–1348. (1997)
Paliouris, G., Taylor, H. W., Wein, R. W., Svoboda, J. and Mierzynski, B. “Fire as an Agent in Redistributing fallout137Cs in the Canadian Boreal Forest.” Science of The Total Environment 160–161: 153–166. (1995)
Patris, N., Delmas, R., Legrand, M., De Angelis, M., Ferron, F. A., Stiévenard, M. and Jouzel, J. “First Sulfur Isotope Measurements in Central Greenland Ice Cores along the Preindustrial and Industrial Periods.” Journal of Geophysical Research: Atmospheres 107.D11: ACH 6-1-ACH 6-11. (2002)
Poissant, L., Schmit, J. P. and Béron, P. “Trace Inorganic Elements in Rainfall in the Montreal Island.” Atmospheric Environment 28.2: 339–346. (1994)
Pope, C. A. and Dockery, D. W. “Health Effects of Fine Particulate Air Pollution: Lines That Connect.” Journal of the Air & Waste Management Association (1995) 56.6: 709–42. (2006)
Price, F. T. and Shieh, Y. N. “The Distribution and Isotopic Composition of Sulfur in Coals from the Illinois Basin.” Economic Geology 74.6: 1445–1461. (1979)
Proemse, B. C., Mayer, B. and Fenn, M. E. “Tracing Industrial Sulfur Contributions to Atmospheric Sulfate Deposition in the Athabasca Oil Sands Region, Alberta, Canada.” Applied Geochemistry 27.12: 2425–2434. (2012)
Rose, D., Gunthe, S. S., Mikhailov, E., Frank, G. P., Dusek, U., Andreae, M. O. and Pöschl, U. “Calibration and Measurement Uncertainties of a Continuous-Flow Cloud Condensation Nuclei Counter (DMT-CCNC): CCN Activation of Ammonium Sulfate and Sodium Chloride Aerosol Particles in Theory and Experiment.” Atmospheric Chemistry and Physics 8.5: 1153–1179. (2008)
Safai, P. D., Budhavant, K. B., Rao, P. S. P., Ali, K. and Sinha, A. “Source Characterization for Aerosol Constituents and Changing Roles of Calcium and Ammonium Aerosols in the Neutralization of Aerosol Acidity at a Semi-Urban Site in SW India.” Atmospheric Research 98.1: 78–88. (2010)
Sakata, M., Ishikawa, T. and Mitsunobu, S. “Effectiveness of Sulfur and Boron Isotopes in Aerosols as Tracers of Emissions from Coal Burning in Asian Continent.” Atmospheric Environment 67: 296–303. (2013)
Sakihama, H. and Tokuyama, A. “Effect of Typhoon on Chemical Composition of Rainwater in Okinawa Island, Japan.” Atmospheric Environment 39.16: 2879–2888. (2005)
Seinfeld, J. H., Pandis, S. N. and Noone, K. “Atmospheric Chemistry and Physics: From Air Pollution to Climate Change.” Physics Today 51.10: 88–90. (1998)
Sharma, M., Agarwal, A. and Bharathi, K. “Characterization of Exhaust Particulates from Diesel Engine.” Atmospheric Environment 39.17: 3023–3028. (2005)
Singer, A., Shamay, Y., Fried, M. and Ganor, E. “Acid Rain on Mt Carmel, Israel.” Atmospheric Environment. Part A. General Topics 27.15: 2287–2293. (1993)
Sinha, B. W., Hoppe, P., Huth, J., Foley, S. and Andreae, M. O. “Sulfur Isotope Analyses of Individual Aerosol Particles in the Urban Aerosol at a Central European Site (Mainz, Germany).” Atmospheric Chemistry and Physics Discussions 8.3: 9347–9404. (2008)
Smith, J. W. and Batts, B. D. “The Distribution and Isotopic Composition of Sulfur in Coal.” Geochimica et Cosmochimica Acta 38.1: 121–133. (1974)
Strode, S. A., Ott, L. E., Pawson, S. and Bowyer, T. W. “Emission and Transport of Cesium-137 from Boreal Biomass Burning in the Summer of 2010.” Journal of Geophysical Research: Atmospheres 117.D9 (2012)
Tanaka, N., Rye, D. M., Xiao, Y. and Lasaga, A. C. “Use of Stable Sulfur Isotope Systematics for Evaluating Oxidation Reaction Pathways and in-Cloud-Scavenging of Sulfur Dioxide in the Atmosphere.” Geophysical Research Letters 21.14: 1519–1522. (1994)
Tao, J., Zhang, L. M., Ho, K. F., Zhang, R. J., Lin, Z. J., Zhang, Z. S., Lin, M., Cao, J. J., Liu, S. X. and Wang, G. H. “Impact of PM2.5 Chemical Compositions on Aerosol Light Scattering in Guangzhou — the Largest Megacity in South China.” Atmospheric Research 135–136: 48–58. (2014)
Thode, H. G. and Monster, J. “Sulfur-Isotope Geochemistry of Petroleum, Evaporites, and Ancient Seas.” Fluids in Subsurface Environments. Vol. 71. AAPG Special Volumes, 1965. 367–377. (1965)
Thode, H. G. and Rees, C. E. “Sulfur Isotope Geochemistry and Middle East Oil Studies.” Endeavour 29: 24–28. (1970)
Thornton, J. D. and Eisenreich, S. J. “Impact of Land-Use on the Acid and Trace Element Composition of Precipitation in the North Central U.S.” Atmospheric Environment (1967) 16.8: 1945–1955. (1982)
Tian, H., Wang, Y., Xue, Z. G., Qu, Y. P., Chai, F. and Hao, J. M. “Atmospheric Emissions Estimation of Hg, As, and Se from Coal-Fired Power Plants in China, 2007.” Science of The Total Environment 409.16: 3078–3081. (2011)
Tie, X. X. and Cao, J. J. “Aerosol Pollution in China: Present and Future Impact on Environment.” Particuology 7.6: 426–431. (2009)
Truex, T. J., Pierson, W. R., McKee, D. E., Shelef, M. and Baker, R. E. “Effects of Barium Fuel Additive and Fuel Sulfur Level on Diesel Particulate Emissions.” Environmental Science & Technology 14.9: 1121–1124. (1980)
Turley, C. D., Brenchley, D. L. and Landolt, R. R. “Barium Additives As Diesel Smoke Suppressants.” Journal of the Air Pollution Control Association 23.9: 783–787. (1973)
United States Environmental Protection Agency (2004) Air Quality Criteria for Particulate Matter (October 2004) Volume. I:1–900.
Var, F., Narita, Y. and Tanaka, S. “The Concentration, Trend and Seasonal Variation of Metals in the Atmosphere in 16 Japanese Cities Shown by the Results of National Air Surveillance Network (NASN) from 1974 to 1996.” Atmospheric Environment 34.17: 2755–2770. (2000)
Vega, E., Reyes, E., Ruiz, H., García, J., Sánchez, G., Martínez-Villa, G., González, U., Chow, J. C. and Watson, J. G. “Analysis of PM2.5 and PM10 in the Atmosphere of Mexico City during 2000-2002.” Journal of the Air & Waste Management Association (1995) 54.7: 786–98. (2004)
Wai, K. M. and Tanner, P. A. “Relationship between Ionic Composition in PM 10 and the Synoptic-Scale and Mesoscale Weather Conditions in a South China Coastal City: A 4-Year Study.” Journal of Geophysical Research 110.D18: D18210. (2005)
Waisberg, M., Joseph, P., Hale, B. and Beyersmann, D. “Molecular and Cellular Mechanisms of Cadmium Carcinogenesis.” Toxicology 192.2–3: 95–117. (2003)
Wang, M. S., Zheng, B. S., Wang, B. B., Li, S. H.,Wu, D. S. and Hu, J. “Arsenic Concentrations in Chinese Coals.” Science of The Total Environment 357.1–3: 96–102. (2006)
WHO (2006) Air Quality Guidelines Global Update 2005. Copenhagen, Denmark. 496 P.
Xiao, H. Y., Zhu, R. G., Lin, B. N. and Liu, C. Q. “Sulfur Isotopic Signatures in Rainwater and Moss Haplocladium Microphyllum Indicating Atmospheric Sulfur Sources in Nanchang City (SE China).” Science of The Total Environment 409.11: 2127–2132. (2011)
Xiao, H. Y., Li, N. and Liu, C. Q. “Source Identification of Sulfur in Uncultivated Surface Soils from Four Chinese Provinces.” Pedosphere 25.1: 140–149. (2015)
Yao, P. H., Shyu, G. S., Chang, Y. F., Chou, Y. C., Shen, C. C., Chou, C. S. and Chang, T. K. “Lead Isotope Characterization of Petroleum Fuels in Taipei, Taiwan.” International Journal of Environmental Research and Public Health 12.12: 4602–4616. (2015)
Yao, X. H., Chan, C. K., Fang, M., Cadle, S., Chan, T., Mulawa, P., He, K. and Ye, B. M. “The Water-Soluble Ionic Composition of PM2.5 in Shanghai and Beijing, China.” Atmospheric Environment 36.26: 4223–4234. (2002)
Yatkin, S. and Bayram, A. “Determination of Major Natural and Anthropogenic Source Profiles for Particulate Matter and Trace Elements in Izmir, Turkey.” Chemosphere 71.4: 685–696. (2008)
Zhang, M. Y., Wang, S. J., Wu, F. C., Yuan, X. H. and Zhang, Y. “Chemical Compositions of Wet Precipitation and Anthropogenic Influences at a Developing Urban Site in Southeastern China.” Atmospheric Research 84.4: 311–322. (2007)
Zhang, Q., Shen, Z. X., Cao, J. J., Ho, K. F., Zhang, R. J., Bie, Z. J., Chang, H. R. and Liu, S. X. “Chemical Profiles of Urban Fugitive Dust over Xi’an in the South Margin of the Loess Plateau, China.” Atmospheric Pollution Research 5.3: 421–430. (2014)
Zhang, Y., Huang, W., Cai, T. Q., Fang, D. Q., Wang, Y. Q., Song, J., Hu, M. and Zhang, Y. X. “Concentrations and Chemical Compositions of Fine Particles (PM2.5) during Haze and Non-Haze Days in Beijing.” Atmospheric Research 174–175: 62–69. (2016)
Zhao, Q., He, K., Rahn, K. A., Ma, Y. L., Yang, F. M. and Duan, F. K. “Using Si Depletion in Aerosol to Identify the Sources of Crustal Dust in Two Chinese Megacities.” Atmospheric Environment 44.21–22: 2615–2624. (2010)
Zhou, G. P. and Tazaki, K. “Seasonal Variation of Gypsum in Aerosol and Its Effect on the Acidity of Wet Precipitation on the Japan Sea Side of Japan.” Atmospheric Environment 30.19: 3301–3308. (1996)
校內:2023-12-31公開