簡易檢索 / 詳目顯示

研究生: 黃雅君
Hunag, Ya-Chun
論文名稱: 考慮顧客需求缺口之模糊品質機能展開模式
A Fuzzy Quality Function Deployment Model Considering Customer Requirement Gap
指導教授: 陳梁軒
Chen, Liang-Hsuan
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 72
中文關鍵詞: 品質機能展開模糊集合理論顧客需求缺口
外文關鍵詞: QFD, Fuzzy theory, Customer requirement gap
相關次數: 點閱:99下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   品質機能展開(Quality Function Deployment, QFD)是為企業廣泛運用的產品開發工具。透過品質機能展開系統能夠將抽象的顧客需求,轉換為具體的生產或改良步驟,以達到更大的顧客滿意度目標,且為了能對市場的變化做出快速且適當的回應,競爭分析也是一個重要的議題,將這些由顧客所獲得的資訊、其他競爭者及企業本身於市場上的表現等市場資訊,分析運用在執行品質機能展開的過程中。決定生產計劃時亦需考量許多因素,如顧客滿意度、成本、技術困難度等。而在資源有限的情況下,如何進行資源的分配,是一個重要的議題。在過去關於資源分配的研究中,大都有將需求缺口的概念納入考量,以避免造成資源的浪費,但在品質機能展開的決策流程中,尚未有研究考慮到此概念。因此,本研究將需求缺口限制納入執行度決策模式中,以避免產生執行度大於需求的現象,而造成資源的浪費。
      為了能更充分的表達顧客需求意見之不確定性,本研究建構一個以模糊數作為評估值的品質機能展開決策流程,共分為三個階段。第一階段為整合專家意見,考慮專家意見的模糊性質,並利用群體決策的方法將專家們的意見加以整合;第二階段為計算各個顧客需求之設計需求執行度上限;第三階段為計算考量需求缺口之設計需求執行度。而第二、三階段皆藉由模糊品質屋方法及設計需求執行度的決策模式完成,模糊品質屋方法將顧客需求轉換為相對應的設計需求,並整合顧客需求與設計需求的競爭分析之相關文獻;設計需求執行度的決策模式則以模糊目標規劃來完成,最後透過演算來驗證本方法的可行性。藉由此品質機能展開決策流程,可以達到新產品開發與品質改良之目的,並因加入需求缺口之考量,改進資源分配結果,以提高顧客滿意程度。

      Quality function deployment (QFD) is a customer-driven approach to achieve higher level of customer satisfaction, in which the design requirements affecting product performance are established to match customer requirements. This study proposed a QFD decision process considering the customer requirement gap to avoid resource wasting.
      The first phase of QFD is the development of a so-called house of quality (HOQ). This study presents a three-stage QFD decision-making process, as follows: (1) The integration of expert advice, based on an entropy method. In this, the weight of each expert in the HOQ depends on how much information they supply. (2) The calculation of the design requirements’ (DRs) fulfillment level upper bound, in which the maximum expectation of the customer requirements is set as the improvement goal, and then execute repeatedly the HOQ and a fuzzy mathematical programming model to convert the customer requirements (CRs) to the corresponding upper bound of the DRs’ fulfillment level, and also consider the competitive analysis at the HOQ step. (3) The calculation of the final fulfillment level of the DRs, in which the steps are similar to stage (2) to obtain the final fulfillment level of the DRs. The differences are replacing the maximum expectation of the customer requirements with the experts given improvement goal at the HOQ step and consider the limitation of the DRs’ fulfillment level from (2) during the progress of the mathematical programming model.
      Unlike previous models, which only focus on maximizing the final fulfillment level of the DRs, the proposed model avoids the wasting of resources caused by a fulfillment level exceeds customer requirements, thus the resulting product plan can be more resource-effective. A numerical example is used to demonstrate the rationality and superiority of the proposed model. The results of the case study verify the reasonableness of the QFD decision-making model. Thus it is important that decision-makers must consider the customer requirement gap when using the QFD approach.

    摘要 .................................I Abstract.................................II 誌謝 .................................V 目錄 .................................VI 表目錄 .................................VII 圖目錄 .................................VIII 第一章 緒論 ..............................1 第一節 研究背景與動機.....................1 第二節 研究目的 ..........................2 第三節 研究範圍 ..........................2 第四節 研究流程 ..........................3 第五節 論文架構 ..........................4 第二章 文獻探討 ..........................6 第一節 模糊集合理論 ..................6 第二節 品質機能展開 ..................11 第三節 熵 ..........................26 第四節 顧客需求缺口 ..................28 第三章 模式建構 ..........................30 第一節 研究構想 ..........................30 第二節 流程建構與模式求解 ..................34 第三節 小結 ..........................52 第四章 範例演算 ..........................53 第一節 案例說明 ..........................53 第二節 案例運算與分析 ..................55 第三節 小結 ..........................62 第五章 結論與未來研究方向 ..................65 第一節 研究結論 ..........................65 第二節 未來研究方向 ..................66 參考文獻 ..................................67

    Armacost, R. L., Componation, P. J., Mullens, M. A., & Swart, W. W. (1994). An AHP Framework For Prioritizing Customer Requirements In QFD - An Industrialized Housing Application. IIE Transactions, 26(4), 72-79. doi: 10.1080/07408179408966620
    Büyüközkan, G., & Feyzioğlu, O. (2005). Group decision making to better respond customer needs in software development. Computers & Industrial Engineering, 48(2), 427-441. doi: http://dx.doi.org/10.1016/j.cie.2005.01.007
    Chan, L.-K., & Wu, M.-L. (2005). A systematic approach to quality function deployment with a full illustrative example. Omega, 33(2), 119-139. doi: http://dx.doi.org/10.1016/j.omega.2004.03.010
    Chan, L. K., Kao, H. P., Ng, A., & Wu, M. L. (1999). Rating the importance of customer needs in quality function deployment by fuzzy and entropy methods. International Journal of Production Research, 37(11), 2499-2518. doi: 10.1080/002075499190635
    Chang Hee, H., Jae Kyeong, K., & Sang Hyun, C. (2004). Prioritizing engineering characteristics in quality function deployment with incomplete information: a linear partial ordering approach. International Journal of Production Economics, 91(3), 235-249. doi: 10.1016/j.ijpe.2003.09.001
    Chen, L.-H., & Chen, C.-N. (2014). Normalisation models for prioritising design requirements for quality function deployment processes. International Journal of Production Research, 52(2), 299-313. doi: 10.1080/00207543.2013.812813
    Chen, L.-H., & Ko, W.-C. (2009). Fuzzy linear programming models for new product design using QFD with FMEA. Applied Mathematical Modelling, 33(2), 633-647. doi: http://dx.doi.org/10.1016/j.apm.2007.11.029
    Chen, L. H., & Ko, W. C. (2010). Fuzzy linear programming models for NPD using a four-phase QFD activity process based on the means-end chain concept. European Journal of Operational Research, 201(2), 619-632. doi: 10.1016/j.ejor.2009.03.010
    Chen, L. H., & Weng, M. C. (2003). A fuzzy model for exploiting quality function deployment. Mathematical and Computer Modelling, 38(5-6), 559-570. doi: 10.1016/s0895-7177(03)00251-6
    Chen, L. H., & Weng, M. C. (2006). An evaluation approach to engineering design in QFD processes using fuzzy goal programming models. European Journal of Operational Research, 172(1), 230-248. doi: 10.1016/j.ejor.2004.10.004
    Cockerell, G. L., & Patterson, D. R. (2005). Closing the supply versus demand gap for veterinary pathologists: a multifaceted problem in need of a multifaceted solution. The Canadian Veterinary Journal, 46(7), 660-661.
    Cohen, L. (1995). Quality function deployment : how to make QFD work for you. Reading [etc.]: Addison-Wesley.
    Dubois, D., & Prade, H. (1978). Operations On Fuzzy Numbers. International Journal of Systems Science, 9(6), 613-626. doi: 10.1080/00207727808941724
    Fung, R. Y. K., Tang, J., Tu, Y., & Wang, D. (2002). Product design resources optimization using a non-linear fuzzy quality function deployment model. International Journal of Production Research, 40(3), 585-599. doi: 10.1080/00207540110061634
    Ghyym, S. H. (1999). A semi-linguistic fuzzy approach to multi-actor decision-making: Application to aggregation of experts' judgments. Annals of Nuclear Energy, 26(12), 1097-1112. doi: 10.1016/s0306-4549(98)00113-3
    Griffin, A., & Hauser, J. R. (1993). The Voice Of The Cstomer. Marketing Science, 12(1), 1-27. doi: 10.1287/mksc.12.1.1
    Han, S. B., Shaw, K. C., Maling, E., & Manbir, S. S. (2001). A conceptual QFD planning model. International Journal of Quality & Reliability Management, 18(8), 796-812. doi: 10.1108/02656710110401187
    Hauser, J. R., & Clausing, D. (1988). The House Of Quality. Harvard Business Review, 66(3), 63-73.
    Herrera, F., Herrera-Viedma, E., & Martinez, L. (2000). A fusion approach for managing multi-granularity linguistic term sets in decision making. Fuzzy Sets and Systems, 114(1), 43-58. doi: 10.1016/s0165-0114(98)00093-1
    Hsu, T.-H., & Lin, L.-Z. (2006). QFD with fuzzy and entropy weight for evaluating retail customer values. Total Quality Management & Business Excellence, 17(7), 935-958. doi: 10.1080/14783360600598223
    Karol, M., Liu, Z., & Eng, K. (1995). An efficient demand-assignment multiple access protocol for wireless packet (ATM) networks. Wireless Networks, 1(3), 267-279. doi: 10.1007/BF01200846
    Karsak, E. E. (2004). Fuzzy multiple objective programming framework to prioritize design requirements in quality function deployment. Computers & Industrial Engineering, 47(2-3), 149-163. doi: 10.1016/j.cie.2004.06.001
    Karsak, E. E., Sozer, S., & Alptekin, S. E. (2003). Product planning in quality function deployment using a combined analytic network process and goal programming approach. Computers & Industrial Engineering, 44(1), 171-190. doi: 10.1016/s0360-8352(02)00191-2
    Leekwijck, W. V., & Kerre, E. E. (1999). Defuzzification: criteria and classification. Fuzzy Sets and Systems, 108(2), 159-178. doi: http://dx.doi.org/10.1016/S0165-0114(97)00337-0
    Li, L., Liu, F., & Li, C. B. (2014). Customer satisfaction evaluation method for customized product development using Entropy weight and Analytic Hierarchy Process. Computers & Industrial Engineering, 77, 80-87. doi: 10.1016/j.cie.2014.09.009
    Lockamy, A., & Khurana, A. (1995). Quality function deployment: total quality management for new product design. International Journal of Quality & Reliability Management, 12(6), 73-84. doi: 10.1108/02656719510089939
    Lyman, D. (1990). Deployment normalization. Paper presented at the Transactions from the Second Symposium on Quality Function Deployment, a Conference Co-sponsored by the Automotive Division of the American Society for Quality Control, the American Supplier Institute, Dearborn, MI, and GOAL/QPC, Methuen, MA.
    Park, T., & Kim, K.-J. (1998). Determination of an optimal set of design requirements using house of quality. Journal of Operations Management, 16(5), 569-581. doi: http://dx.doi.org/10.1016/S0272-6963(97)00029-6
    Partovi, F. Y., & Corredoira, R. A. (2002). Quality function deployment for the good of soccer. European Journal of Operational Research, 137(3), 642-656. doi: http://dx.doi.org/10.1016/S0377-2217(01)00072-8
    Sohn, S. Y., & Choi, I. S. (2001). Fuzzy QFD for supply chain management with reliability consideration. Reliability Engineering & System Safety, 72(3), 327-334. doi: 10.1016/s0951-8320(01)00022-9
    Sullivan, L. P. (1986). Quality Function Deployment. Quality Progress, 19(6), 39-50.
    Vanegas, L. V., & Labib, A. W. (2001). A Fuzzy Quality Function Deployment (FQFD) model for deriving optimum targets. International Journal of Production Research, 39(1), 99-120. doi: 10.1080/00207540010005079
    Wang, R. C., & Chuu, S. J. (2004). Group decision-making using a fuzzy linguistic approach for evaluating the flexibility in a manufacturing system. European Journal of Operational Research, 154(3), 563-572. doi: 10.1016/s0377-2217(02)00729-4
    Wasserman, G. S. (1993). On How To Prioritize Design Requirements During The QFD Planning Process. IIE Transactions, 25(3), 59-65. doi: 10.1080/07408179308964291
    Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. doi: http://dx.doi.org/10.1016/S0019-9958(65)90241-X
    Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning—I. Information Sciences, 8(3), 199-249. doi: http://dx.doi.org/10.1016/0020-0255(75)90036-5
    Zhang, X. Q., Wang, C. B., Li, E. K., & Xu, C. D. (2014). Assessment Model of Ecoenvironmental Vulnerability Based on Improved Entropy Weight Method. Scientific World Journal, 7. doi: 10.1155/2014/797814
    Zhou, M. (1998). Fuzzy logic and optimization models for implementing QFD. Computers & Industrial Engineering, 35(1-2), 237-240. doi: 10.1016/s0360-8352(98)00073-4

    下載圖示 校內:2020-07-30公開
    校外:2020-07-30公開
    QR CODE