簡易檢索 / 詳目顯示

研究生: 陳瑞清
Chen, Jui-Ching
論文名稱: 奈米級研磨粒子粒徑對阻障層移除效應之實驗探討
Experimental Exploration of Nano-abrasive Particle Size on Removal Rate of Barrier Film
指導教授: 趙隆山
Chao, Long-Sun
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系碩士在職專班
Department of Engineering Science (on the job class)
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 86
中文關鍵詞: 化學機械研磨阻障層平坦化移除率碟深整體碟深
外文關鍵詞: CMP (Chemical Mechanical Polishing), Barrier, plananzation efficiency, removal rate, Dishing, erosion
相關次數: 點閱:110下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 半導體製程日新月異,從130nm製程發展到28 nm,相對的積體電路線寬越來越窄,當元件縮小時對微影技術的解析度就需要變的高,製程挑戰也越來越嚴苛,維持晶圓表面的平坦化程度直接影響到微影製程,而化學機械研磨是最佳的平坦化製程。
    本文於化學機械研磨製程之研究中,首先針對兩種研磨粒徑尺寸與軟硬的研磨墊,利用實驗計畫法探討磨壓力、研磨漿量跟氧化劑濃度對金屬薄膜、阻障層薄膜、氧化矽薄膜還有低介電材料移除率的影響。從分析結果中,發現比較特別的是低介電材質薄膜之移除率快慢跟粒徑大小是相反趨勢,並在軟墊上移除效率會比硬墊上快。
    利用空白晶圓上的移除量,來比較金屬層移除率跟氧化層移除率之間的選擇比關係,並藉由空白晶圓上的選擇比,實際應用在圖案晶圓上進而判斷該研磨條件變化對最終研磨平坦化的影響,並觀察在不同選擇比對100m 線寬跟9m 線寬的金屬損失量,不論在軟墊跟硬墊上選擇比必須要小於一,以避免研磨終止時,過渡研磨造成額外金屬層損失,造成銅線上嚴重碟深與介電層上的整體碟深。

    關鍵字: 化學機械研磨、阻障層、平坦化、移除率、碟深、整體碟深。

    Until now, leading enterprises (such as TSMC, IBM, Intel, and Samsung) still keep a growing number of investments in semiconductor technology upgrade and new technology development. As improvement of lithography technology and increasing request of VLSI (very large-scale integration), advanced semiconductor electronic devices continue to shrink from 130nm, 90nm, 45nm to 28nm, even 14nm and wafer size is enlarged from 200mm to 300mm (450mm wafer is under evaluation). In order to get stable manufacture process of advanced nano-devices, global wafer plananzation would be the most important factor to achieve this target. Among plananzation methods, CMP (Chemical Mechanical Polishing/plananzation) process is well-known as the one to provide better manufacture control capabilities.
    In metal CMP process, barrier slurry is responsible for Cu layer topography and defectivity which play an important role in manufacture yield and next Cu film stack. For barrier slurry components, colloidal silica particle providing mechanical force is critical to final polishing performance. This thesis focuses on Cu/barrier blanket wafers removal rate (RR) selectivity and pattern wafer topography of different particle size in barrier slurry.
    Removal rate selectivity of different blanket wafers (including Cu, TEOS, TaN and Coral) is collected on soft/hard pads by DOE study (design of experiments). In this DOE, controlled factors are (1) different polishing down force (DF), (2) oxidant concentration (H2O2%) and (3) slurry flow (SF) amount. From polishing results, (1) Cu, TaN and TEOS RR would depend on particle size on both soft and hard pad; (2) low k film (Coral) RR is opposite to particle size and higher on soft pad under the same DF and SF.
    After getting blanket wafer polishing performance, a correlation establishment between RR selectivity of blanket wafer and Cu loss amount of pattern wafer is the next step. For pattern wafer polishing, requested RR selectivity (Cu/barrier) ratio must be less than 1 on both soft and hard pads to avoid excess Cu loss. It means that Cu RR must be less than other barrier films (TEOS, Ta/TaN or Coral). For final pattern wafer evaluation, topography performance including dishing (100x100μm assay) and erosion (9x1μm assay) would be strongly related to the blanket wafer selectivity. Under the condition of the RR selectivity less than one, the higher selectivity (Cu/barrier) would obtain the higher dishing and performance.

    Key Words: CMP (Chemical Mechanical Polishing), Barrier, Plananzation Efficiency, Removal Rate, Dishing, Erosion

    目錄 摘要.....................................................Ⅰ 目錄.................................................... V 圖目錄.................................................. IX 表目錄............................................... ⅩIII 符號說明.............................................. ⅩV 第一章 緒論 1.1 研究背景............................................1 1.2 化學機械研磨........................................6 1.3 研究動機與目的......................................8 1.4 文獻回顧...........................................10 第二章 化學機械研磨的要素技術探討 2.1 化學機械研磨裝置技術...............................15 2.1.1 研磨機台介紹..................................16 2.1.2 研磨墊介紹....................................17 2.1.3 研磨墊整理器(人工鑽石)........................20 2.2 化學機械研磨液介紹.................................23 2.2.1 研磨液組成...................................23 2.2.2 研磨粒徑介紹................................24 2.3 研磨移除機制討論...................................25 2.3.1 金屬層移除機制討論..........................25 2.3.2 非金屬層移除機制討論........................26 2.3.3 低介電常數薄膜移除機制討論..................27 2.4 平坦化機制討論.....................................28 第三章 實驗設備與實驗規畫 3.1 研磨與量測機台簡介.................................30 3-1.1 (Applied-Polish tool) 研磨機台簡介...............30 3.1.2 金屬量測機台.................................31 3.1.3 非金屬量測機台...............................33 3.1.4 晶圓表面輪廓儀...............................34 3.1.5 晶圓清洗機台.................................35 3.1.6 晶圓表面缺陷檢測儀器.........................36 3.2 實驗規劃..........................................37 3.2.1 實驗計畫法- (Design of Experiment, DOE)..........37 3.2.2 機台研磨參數設計.............................40 3.2.3 實驗材料準備.................................41 3.2.3.1 研磨墊活化..........................41 3.2.3.2 研磨墊整理器活化....................42 3.2.4 實驗的研磨液配置............................42 3.2.5 晶圓厚度量測................................43 3.2.5.1 空白晶圓量測.........................43 3.2.5.2 圖案晶圓量測.........................44 第四章 實驗結果與討論 4.1 軟墊(Fujibo pad)上研磨研磨效率探討..................47 4.1.1氧化劑濃度改變對50nm與70 nm不同粒徑及移除率變化探討....................48 4.1.2 粒徑、機械力、流量與氧化劑濃度對移除率探討...50 4.1.3 (Fujibo pad),自變數改變與移除率變化關係討論..55 4.2 硬墊(D100 pad)上研磨研磨效率探討...................56 4.2.1氧化劑濃度改變對50nm與70 nm 不同粒徑及移除率變化探討...................................57 4.2.2 粒徑、機械力、流量與氧化劑濃度對移除率探討...58 4.2.3硬墊(D100 pad)變數改變與移除率變化關係討論...62 4.3 軟墊(Fujibo)跟硬墊(D100)研磨研磨趨勢綜合比較.........63 4.4 軟墊(Fujibo pad)跟硬墊(D100 pad)研磨研磨量綜合比較....64 4.5 圖案晶圓驗證.......................................66 4.5.1 圖案晶圓示意圖介紹...........................66 4.5.2 圖案晶圓研磨順序與研磨步驟介紹...............69 4.5.3 粒徑50nm與70nm在不同研磨墊上選擇比討論....72 4.5.4 討論最大與最小選擇比對圖案晶圓最終研磨後的碟深 的差異......................................77 第五章 結論與未來研究....................................81 5.1 結論...............................................81 5.2 未來研究...........................................82 參考文獻...............................................83

    參考文獻
    [1] 王建榮、林必窕、林慶福編譯,半導體平坦化CMP技術,全華科技圖書股份有限公司出版。2000。
    [2] 劉文超、許渭洲校閱,羅文雄,蔡榮輝、鄭铀盈譯,半導體製造技術,滄海書局,2003。
    [3] Joseph M. Steigerwald, Shyam P. Murarka, Ronald J. Gutmann, Chemical Mechanical Planarization of Microelectronic Materials, A Wiley-Interscience Publication, 1997.
    [4] 魏清忠,國立成功大學,工程科學系碩士論文,固定磨粒化學機械研磨於淺溝渠隔離製程效應的研究,2007。
    [5] 羅正忠、張鼎張譯,原著HONG XIAO,半導體製程技術導論,台灣培升教育出版社,2003。
    [6] 林明智,國立中央大學,化學工程研究所碩士論文,化學機械研磨得微觀機制探討,2000。
    [7] Mahadevaiyer Krishnan, Jakub W. Nalaskowski, and Lee M. Cook Chem, Chemical Mechanical Planarization: Slurry Chemistry, Materials, and Mechanisms . 2010.

    [8]IParshuram B. Zantye, Ashok Kumar, A.K. Sikder, Chemical mechanical planarization for microelectronics Applications Materials Science and Engineering, 2004.
    [9] C. Zhou, L. Shan, S. H. Ng, R. Hight, A. J. Paszkowski, S. Danyluk,
    .Influence of Colloidal Abrasive Size on Material Removal Rate and
    .Surface Finish in SiO2 Chemical Mechanical Polishing, Mat. Res.
    Soc. Symp. 2001.
    [10] W. Choi, S.-M. Lee, R. K. Singh, Particle Size and Surfactant Effects on Chemical mechanical Polishing of Glass using Silica-Based Slurry, Mat. Res. Soc. Symp. 2001.
    [11] H. Nishizawa, J. H. Park, A. Isobe, One Step Polishing Slurry for
    Cu-TSV Process (Mixing of 2 different size particle), Nitta-Haas
    Inc. 2010.
    [12] 無磨粒銅製程化學機械研磨平坦化技術 第九卷第一期 12-16毫微米通訊,2002。
    [13] Jin Amanokura, Yasuo Kamigata, Masanobu Habiro, Hiroshi Suzuki
    and Masanobu Hanazono, Development of New abrasive-free copper CMP Solutions Based on Electrochemical and Film Analysis Method Semiconductor Materials Div. Yamazaki Works, Hitachi Chemical Co. Ltd, Ibaraki, Japan Mat. Res. Soc. Symp. Proc. Vol. 732E 2002 Materials Research Society.
    [14] John Nguyen, Gerald Martin, Ron Carpio, Malcolm Grief, Somit Joshi. Performance Comparisons of Abrasive Containing and Abrasive Free Slurries for Copper Low-k CMP Mat. Res. Soc. Symp. 2002.
    [15] Darren Denardis, Jamshid Sorooshian, Masanobu Habiro 1, Chris Roger 2 and Ara PHILIPOSSIAN, Tribology and Removal Rate Characteristics of Abrasive-Free Slurries for Copper CMP Applications Jpn. J. Appl. 2003.
    [16] S. Konda, N. Sakuma, Y. Homma, Y. Goto, N. Ohashi, and N. Owada, Abrasive-Free Polishing for Copper Damascene Interconnection, Journal of Electrochemical Society, 2000.
    [17] Shijian Li, Lizhong Sun, Stan Tsai, Feng Q. Liu, Liang Chen, A Low Cost and Residue-Free Abrasive-Free Copper CMP Process With Low Dishing, Erosion And Oxide Loss, interconnect technology conference, proceeding of the IEEE 2001, 2001.
    [18] M. M. Martinez, paper presented at the SRC Topical Research Conference on Chemical Mechanical Polishing held at Rensselaer Polytechnic Institute, Troy, 1995.
    [19] S. Sivaram, K. Monnig, R. Tolles, A. Maury, and R. Leggett, Proc.
    3rd Int. Symposium on ULSI Science and Technology, ed J. M.
    Andrews and G. K. Celler, The Electron chemical Society, Inc,
    1991.
    [20] Mahadevaiyer Krishnan, Jakub W. Nalaskowski, and Lee M. Cook, Chemical Mechanical Planarization: Slurry Chemistry, Materials, and Mechanisms, IBM T. J. Watson Research Center, Yorktown Heights, New York 10598, and Dow Electronic Materials, Newark, Delaware 19713.
    [21] 林明憲 編著,矽晶圓半導體材料技術(修訂版),全華圖書股份有限公司,2007年12月。
    [22] 莊達人 編著,VLSI 製造技術,高立圖書有限公司,2004。

    下載圖示 校內:2017-02-14公開
    校外:2017-02-14公開
    QR CODE