簡易檢索 / 詳目顯示

研究生: 何志文
Ho, Jyh-Wen
論文名稱: 創新產品於產品壽命與顧客參與之規劃
Planning of Product Life and Customer Involvement for Innovative Products
指導教授: 黃宇翔
Huang, Yeu-Shiang
學位類別: 博士
Doctor
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 74
中文關鍵詞: 競爭者學習曲線效果CIFA 比率產品生命週期貝式決策分析
外文關鍵詞: Product life cycle, Learning curve effect, Competitors, Bayesian decision analysis, CIFA ratio
相關次數: 點閱:150下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文提出一套貝式決策模型,希望能夠藉此協助企業經營者制訂合宜的策略以進行產品設計與行銷。假設一個創新產品的產品生命週期(product life cycle)被分為三個階段,並使用配合冪次型函數之非齊次卜瓦松過程(nonhomogeneous Poisson process)描述在獨佔性競爭市場的廠商進入過程。首先探討競爭者的進入市場對於原製造廠商的產品利潤所造成的影響,藉由提出的貝式決策模型,決定最佳產品壽命以達到利潤最大化。其次,根據此最佳產品壽命,繼續探討在三階段的產品生命週期裡,競爭者之進入市場與學習曲線效果的影響下,原製造廠商生產自己動手做(do-it-yourself, DIY)產品的成本估計,然後探究在此DIY產品中,顧客在最後組裝參與(customer involvement in final assembly, CIFA)的最佳程度,以使得原製造廠商能夠達到成本最小化,而能再進一步安排生產此DIY產品的策略。

    In this study, a Bayesian decision model is proposed to assist the managers in formulating a sound strategy for designing and marketing a product. The product life cycle (PLC) of an innovative product is divided into three stages, where a nonhomogeneous Poisson process (NHPP) with a power law intensity function is employed to illustrate the entry process of rival firms in a monopolistically competitive market. The effects of the competitors’ entries on the profits of the incumbent firm are taken into consideration, with an objective of deriving the optimal product life to maximize the incumbent’s profit. Furthermore, in light of such an optimal product life, the do-it-yourself (DIY) type of production and marketing strategy is deliberated, of which both the competition and the learning curve effect within the three stages of the PLC are considered in estimating the incumbent’s costs. The optimal degree of the customer involvement in final assembly (CIFA) in establishing the DIY product design is then investigated in order to achieve cost minimization of the incumbent firm, and the production plan of this DIY product is thus able to be further arranged.

    摘要 ………………………………………………………… Ⅰ Abstract ……………………………………………………………………… Ⅱ Acknowledgements ………………………………………………………… Ⅲ Table of Contents ………………………………………………………… Ⅳ List of Tables ……………………………………………………………… Ⅶ List of Figures ………………………………………………………………… Ⅷ Chapter 1 Introduction ………………………………………………………… 1 1.1 Research Motivation …………………………………………………… 1 1.2 Research Objective ……………………………………………………… 2 1.3 Research Framework …………………………………………………… 3 1.4 Organization of the Dissertation …………………… 5 Chapter 2 Literature Review …………………………………………………… 7 2.1 Competitors’ Entry Behavior …………………………………………… 7 2.2 Nonhomogeneous Poisson Process ……………………………………… 9 2.3 Product Life Cycle ……………………………………………………… 10 2.4 Customer Involvement in Final Assembly …………………………… 11 2.5 Learning Curve Effect ………………………………………………… 12 Chapter 3 Effect of Competitors’ Entries ……………………… 14 3.1 Competitors’ Entries into the Market ………………………………… 15 3.2 Profit Model Formulation ……………………………………………… 19 Chapter 4 Bayesian Analysis in Determining the Optimal Product Life …… 21 4.1 Prior Analysis for Optimal Product Life ……………………………… 22 4.2 Preposterior and Posterior Analyses for Optimal Product Life ……… 26 Chapter 5 Effect of the Learning Curve on DIY Products …………………… 30 5.1 CIFA Ratio for a DIY Product ………………………………………… 32 5.2 Learning Curve Effect of Producing DIY Products ……………………… 33 5.3 Cost Model Formulation ……………………………………………… 34 Chapter 6 Bayesian Analysis in Determining the Optimal CIFA Ratio for a DIY Product … 37 6.1 Prior Analysis for Optimal CIFA Ratio ………………………………… 37 6.2 Preposterior Analysis for Optimal CIFA Ratio ……………………… 40 6.3 Posterior Analysis for Optimal CIFA Ratio …………………………… 42 Chapter 7 Numerical Example……………………………………………… 46 7.1 Evaluation of Optimal Product Life …………………………………… 46 7.2 Evaluation of Optimal CIFA ratio ……………………………………… 54 Chapter 8 Conclusions ……………………………………………………… 65 References …………………………………………………………………… 68

    Agard, B., Tollenaere, M. (2003). Design of product families: methodology and application. 14th International Conference on Engineering Design, Stockholm, Sweden.
    Aitken, J., Childerhouse, P., Towill, D. (2003). The impact of product life cycle on supply chain strategy. International Journal of Production Economics, 85(2), 127-140.
    Allanson, P., Montagna, C. (2005). Multiproduct firms and market structure: An explorative application to the product life cycle. International Journal of Industrial Organization, 23(7-8), 587-597.
    Bain, L.J., Engelhardt, M. (1992). Introduction to Probability and Mathematical Statistics, 2nd ed. Belmont, CA: Duxbury Press.
    Bandyopadhyay, N., Sen, A. (2005). Non-standard asymptotics in an inhomogeneous Gamma process. Annals of the Institute of Statistical Mathematics, 57(4), 703-732.
    Blattberg, R.C., Hoch, S.J. (1990). Database models and managerial intuition: 50% model + 50% manager. Management Science, 36(8), 887-899.
    Chang, P.T., Chang, C.H. (2003). A stage characteristic-preserving product life cycle modeling. Mathematical and Computer Modelling, 37, 1259-1269.
    Chi, T., Liu, J. (2001). Product life cycle, and market entry and exit decisions under uncertainty. IIE Transactions, 33, 695-704.
    Debruyne, M., Moenaert, R., Griffin, A., Hart, S., Hultink, E.J., Robben, H. (2002). The impact of new product launch strategies on competitive reaction in industrial markets. Journal of Product Innovation Management, 19, 159-170.
    Ekelund, R.B.J., Hebert, R.F., Tollison, R.D. (2004). The economics of the counter-reformation: incumbent-firm reaction to market entry. Economic Inquiry, 42(4), 690-705.
    Fandel, G., Stammen, M. (2004). A general model for extended strategic supply chain management with emphasis on product life cycles including development and recycling. International Journal of Production Economics, 89(3), 293-308.
    Fotopoulos, G., Spence, N. (1998). Entry and exit from manufacturing industries: Symmetry, turbulence and simultaneity--Some empirical evidence from Greek manufacturing industries, 1982-1988. Applied Economics, 30(2), 245-262.
    Hanssens, D.M., Leeflang, P.S.H., Wittink, D.R. (2005). Market response models and marketing practice. Applied Stochastic Models in Business and Industry, 21(4-5), 423-434.
    Harter, G. (1989). The nonhomogeneous Poisson process-A model for the reliability of complex repairable systems. Microelectronics and Reliability, 29(3), 381-386.
    Hjorth, U. (1980). A reliability distribution with increasing, decreasing, constant and bathtub-shaped failure rate. Technometrics, 22(1), 99-107.
    Huang, Y.S. (2001). A decision model for deteriorating repairable systems. IIE Transactions, 33(6), 479-485.
    Huang, Y.S. (2004). A structural design of decision support systems for deteriorating repairable systems. Computers & Operations Research, 31(7), 1135-1145.
    Huang, Y.S., Bier, V.M. (1998). A natural conjugate prior for the nonhomogeneous Poisson process with a power law intensity function. Communications In Statistics-Simulation and Computation, 27(2), 525-551.
    Hur, S., Nam, J. (2006). Performance analysis of automatic storage/retrieval systems by stochastic modeling. International Journal of Production Research, 44(8), 1613-1626.
    Krikke, H., Bloemhof-Ruwaard, J., Van Wassenhove, L.N. (2003). Concurrent product and closed-loop supply chain design with an application to refrigerators. International Journal of Production Research, 41(16), 3689-3719.
    Krishnan, T.V., Bass, F.M., Kumar, V. (2000). Impact of a late entrant on the diffusion of a new product/service. Journal of Marketing Research, 27, 269-278.
    Lee, C.H., Kim, Y.T., Park, D.H. (2004). S-shaped software reliability growth models derived from stochastic differential equations. IIE Transactions, 36(12), 1193-1199.
    Lee, J., Boatwright, P., Kamakura, W.A. (2003). A Bayesian model for prelaunch sales forecasting of recorded music. Management Science, 49(2), 179-196.
    Lee, L. (1980). Testing adequacy of the Weibull and log linear rate models for a Poisson process. Technometrics, 22(2), 195-199.
    Maille, P., Tuffin, B. (2003). The progressive second price mechanism in a stochastic environment. Netnomics, 5(2), 119-147.
    McElroy, K.M., Siegfried, J.J. (1985). The effect of firm size on corporate philanthropy. Quarterly Review of Economics and Business, 25(2), 18-26.
    McNamara, G.M., Luce, R.A., Tompson, G.H. (2002). Examining the effect of complexity in strategic group knowledge structures on company performance. Strategic Management Journal, 23(2), 153-170.
    Moon, I., Lee, S. (2000). The effects of inflation and time-value of money on an economic order quantity model with a random product life cycle. European Journal of Operational Research, 125(3), 588-601.
    Morrison, J.S. (1995). Life-cycle approach to new product forecasting. Journal of Business Forecasting Methods & Systems, 14(2), 3-5.
    Mosey, S. (2005). Understanding new-to-market product development in SMEs. International Journal of Operations & Production Management, 25(2), 114-130.
    Müller, P., & Parmigiani, G. (1995). Optimal design via curve fitting of Monte Carlo experiments. Journal of the American Statistical Association, 90, 1322-1330.
    Palomo, J., Ruggeri, F., Insua, D.R., Cagno, E., Caron, F., Mancini, M. (2006). On Bayesian forecasting of procurement delays: A case study. Applied Stochastic Models in Business and Industry, 22(2), 181-192.
    Pammer, S.E., Fong, D.K.H., Arnold, S.F. (2000). Forecasting the penetration of a new product-a Bayesian approach. Journal of Business & Economic Statistics, 18(4), 428-435.
    Pham, H., Zhang, X. (2003). NHPP software reliability and cost models with testing coverage. European Journal of Operational Research, 145(2), 443-454.
    Rigdon, S.E., Ma, X., Bodden, K.M. (1998). Statistical Interference for repairable systems using the power law process. Journal of Quality Technology, 30(4), 395-400.
    Salem, S.A. (1992). Bayesian estimation of a non-linear failure rate from censored samples type II. Microelectronics and Reliability, 32(10), 1385-1388.
    Salvador, F., Forza, C., Rungtusanatham, M. (2002a). How to mass customize: Product architectures, sourcing configurations. Business Horizons, 45(4), 61-69.
    Salvador, F., Forza, C., Rungtusanatham, M. (2002b). Modularity, product variety, production volume, and component sourcing: theorizing beyond generic prescriptions. Journal of Operations Management, 20(5), 549-575.
    Schroeder, R.G. (1993). Operations management: Decision making in the operations function, 4th ed. McGraw-Hill: New York.
    Shankar, V., Carpenter, G.S., Krishnamurthi, L. (1999). The advantages of entry in the growth stage of the product life cycle: An empirical analysis. Journal of Marketing Research, 26, 269-276.
    Shyur, H.J. (2003). A stochastic software reliability model with imperfect-debugging and change-point. Journal of Systems and Software, 66(2), 135-141.
    Siu, N.O., Kelly, D.L. (1998). Bayesian parameter estimation in probabilistic risk assessment. Reliability Engineering & System Safety, 62(1-2), 89-116.
    Song, J.H., Adams, C.R. (1993). Differentiation through customer involvement in production or delivery. Journal of Consumer Marketing, 10(2), 4-12.
    Talukdar, D., Sudhir, K., Ainslie, A. (2002). Investing new product diffusion across products and countries. Marketing Science, 21(1), 97-114.
    Tamura, Y., Yamada, S. (2006). A flexible stochastic differential equation model in distributed development environment. European Journal of Operational Research, 168(1), 143-152.
    Transier, M., Füßler, H., Widmer, J., Mauve, M., Effelsberg, W. (2007). A hierarchical approach to position-based multicast for mobile ad-hoc networks. Wireless Networks, 13(4), 447-460.
    Werker, C. (2003). Innovation, market performance, and competition: lessons from a product life cycle model. Technovation, 23(4), 281-290.
    Williams, C.C. (2004). A lifestyle choice? Evaluating the motives of do-it-yourself (DIY) consumers. International Journal of Retail & Distribution Management, 32(4/5), 270-278.
    Yadavalli, V.S.S., Bekker, A., Pauw, J. (2005). Bayesian study of a two-component system with common-cause shock failures. Asia-Pacific Journal of Operational Research, 22(1), 105-119.
    Yamada, S., Osaki, S. (1985). Software reliability growth modeling: models and applications. IEEE Transactions on Software Engineering, 11(12), 1431-1437.
    Yelland, F., Varty, C. (1997). DIY: consumer-driven research. Journal of the Market Research Society, 39(2), 297-315.
    Zeephongsekul, P., Bedford, A. (2006). Waiting time analysis of the multiple priority dual queue with a preemptive priority service discipline. European Journal of Operational Research, 172(3), 886-908.

    下載圖示 校內:2009-06-12公開
    校外:2009-06-12公開
    QR CODE