簡易檢索 / 詳目顯示

研究生: 林美薇
Lin, Mai-Wei
論文名稱: TolC外膜蛋白在創傷弧菌毒力所扮演的角色
Role of TolC in virulence of Vibrio vulnificus
指導教授: 何漣漪
Hor, Lien-I
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 82
中文關鍵詞: 毒力創傷弧菌
外文關鍵詞: TolC, vibrio vulnificus
相關次數: 點閱:95下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 創傷弧菌為一棲居於海水環境的革蘭氏陰性菌,對人類而言,它屬於伺機性病原,在一些免疫有缺陷的病人造成相當嚴重的傷口感染及引發致死性敗血症。創傷弧菌產生很多細胞外產物,如:莢膜、siderophores、蛋白酶、細胞溶解毒素及磷脂酶,均被認為與其毒力有關。但根據我們實驗室之前的研究顯示,蛋白酶、細胞溶解毒素及磷脂酶並非重要的毒力因子,因為觀察不產生蛋白酶、細胞溶解毒素及磷脂酶的三重突變株,發現它們仍然對HEp-2細胞具有毒殺作用且對小鼠的半致死劑量與野生株沒有明顯差異。然而,從實驗室之前偶然分離到一株對HEp-2細胞幾乎沒有毒性的細胞溶解毒素及磷脂酶雙突變株 (NY303),發現其對小鼠的毒力比野生株要來得低,顯示創傷弧菌的細胞毒殺性可能是一個重要的毒力因素,我們推測NY303突變株可能含有一個未知的突變而導致細菌失去細胞毒殺作用。我們曾在大腸桿菌菌株S17-1lpir構築此菌的基因庫,並擬由當中篩選出能夠回復NY303之細胞毒性的DNA片段,以進一步找出此未知之細胞毒素。然而,我們尚未得到足夠數目的轉形株以進行這項實驗。另一方面,有文獻指出,霍亂弧菌之RTX蛋白毒素會造成HEp-2細胞型態上的改變且可能與El Tor霍亂弧菌的竄起有關,我們發現創傷弧菌也具有rtx gene cluster。並由染色體上含有rtx gene cluster的區域設計五對核酸引子,利用聚合酶連鎖反應檢視NY303的rtx gene cluster是否含有deletion。結果發現,由NY303 rtx gene cluster放大出的PCR產物的長度與野生株並沒有明顯差異,但我們並不能排除NY303之RTX發生點突變的可能。同時,有研究指出霍亂弧菌的TolC外膜蛋白質參與RtxA的運輸過程且與膽鹽的耐受性有關,我們利用tolC突變株 (MW021) 的構築以了解TolC在創傷弧菌的致病過程可能扮演的角色,發現MW021對於膽鹽及紅黴素敏感性大於野生株。觀察活菌對HEp-2細胞之毒性試驗時,我們發現MW021對HEp-2細胞幾乎不具毒性且對小鼠的毒力也比野生株要來得低。這些結果顯示,TolC可能藉由影響一個未知細胞毒素的活性或分泌來參與創傷弧菌的致病過程。此外,我們懷疑tolC可能為創傷弧菌之必要基因,因為我們很難分離到tolC有缺失的菌株。為了釐清tolC是否為創傷弧菌之必要基因,我們在分離tolC突變株過程中,in trans提供一個完整的tolC基因,以避免染色體上的tolC當置換成缺失tolC基因而造成的細胞死亡。結果顯示,我們並沒有得到更多染色體上tolC已缺失的菌株。有關於tolC是否為創傷弧菌之必要基因,有待更進一步證實。

    Vibrio vulnificus, a gram-negative marine bacterium, is an opportunistic pathogen that causes severe wound infection and septicemia in immunocompromised patients. V. vulnificus strains produce a number of potential virulence factors including capsular polysaccharide, siderophores, protease, cytolysin and phospholipase. Our previous data showed that the protease, cytolysin and phospholipase are not the major virulence factors, because disruption of all the three genes encoding these factors did not reduce the virulence in mice or cytotoxicity to HEp-2 cells. However, a non-cytotoxic mutant, NY303, isolated fortuitously from a phospholipase-cytolysin double-deficient mutant was shown to be much less virulent in mice, indicating that cytotoxicity is an important virulence factor. We suspected that NY303 might have lost the activity of an unidentified cytotoxin. We have tried to construct a library in E. coli strain S17-1lpir and will screen for clones that complement the defect of NY303 in cytotoxicity. However, we have not had sufficient numbers of clones in this library for doing this complementation experiment. On the other hand, a homologue of V. cholerae rtx gene cluster, which has been shown to cause the morphological change of cultured cells and seemed to serve as a key role in the emergence of the El Tor strain, was identified in V. vulnificus. We designed primers to amplify the RTX gene cluster in the wild type strain and NY303. Although there was no distinct difference in the length of the PCR products between these two strains, we could not rule out the possibility of point mutation in the rtx gene cluster in NY303. Meanwhile, tolC, an outer membrane protein involved in the export of diverse molecules ranging from large protein toxin to antibiotics, was shown to be required for the secretion of RTX toxin and colonization of V. cholerae. A tolC homologue was also identified in V. vulnificus. To determine the role of tolC in the virulence of V. vulnificus, a tolC-deficient mutant, MW021, was isolated by allelic exchange. MW021 was more sensitive to bile and erythomycin compared with the parental strain. In addition, MW021, was non-cytotoxic to the HEp-2 cells and much less virulent in mice, suggesting that tolC may be involved in the pathogenesis of V. vulnificus, probably by secreting an unidentified cytolysin. The tolC gene was suspected to be an essential gene because it was extremely difficult to obtain a tolC-deficient mutant. To test this, a plasmid carrying tolC was introduced into MW021 and the frequency of isolating the ΔtolC mutant was determined. No increase in the isolation frequency ofΔtolC mutant was observed in the presence of tolC in trans. Whether tolC is essential for V. vulnificus viability awaits further investigation.

    頁數 壹、中文摘要 i 貳、英文摘要 iii 參、致謝 v 肆、目錄 vii 伍、表目錄 ix 陸、圖目錄 xi 柒、緒論 1 捌、材料與方法 7 一、實驗菌株、細胞株與質體 7 二、創傷弧菌基因庫的構築 7 1. 細菌之培養與保存 7 2. 小量純化質體DNA之方法 8 3. 大量純化質體DNA之方法 8 4. 小量純化細菌染色體DNA之方法 10 5. 大量純化細菌染色體DNA之方法 10 6. 限制酵素切割質體DNA 11 7. DNA片段之分離與回收 11 8. DNA片段之去磷酸化反應 12 9. 染色體DNA之部分切割 12 10. DNA接合反應 13 11. 細胞熱休克轉形作用 13 12. 細胞電極轉形作用 14 三、創傷弧菌rtx gene cluster 之鑑識與分析 15 1. 創傷弧菌部分基因資料庫之搜尋與DNA分析 15 2. 大片段聚合酶連鎖反應 15 四、 創傷弧菌ΔtolC突變株之製作及特性分析 15 1. 聚合酶連鎖反應 15 2. TA cloing (PCR放大片段之選殖) 16 3. 細菌接合生殖 16 4. 突變株之分離 17 5. 南方雜交法(Southern hybridization) 17 6. DNA定序 18 7. 細菌生長之測定 18 8. 細菌對膽鹽之感受性試驗 18 9. 細菌對抗生素之感受性試驗 19 10. 補償作用(Complementation) 19 11. 細菌RNA之萃取 19 12. 商業化套件萃取細菌RNA 20 13. RNA之反轉錄作用 21 14. 北方墨點法(Northern blotting) 21 15. 蛋白酶和細胞溶解毒素活性之分析 22 16. 細菌對血清的抵抗性 (serum resistance) 試驗 23 17. 細菌對表皮細胞的毒性(cytotoxicity)試驗 24 18. 細菌對小鼠的毒性測試(virulence assay) 24 玖、結果 26 一、 基因庫之構築 26 二、 創傷弧菌rtx gene cluster之確認與分析 27 三、 創傷弧菌ΔtolC突變株之分離與特性分析 27 拾、討論 35 拾壹、參考文獻 40 拾貳、圖表集 46 拾參、附錄 80 拾肆、自述 82

    參考文獻

    1. Linkous DA, Oliver JD. 1999. Pathogenesis of Vibrio vulnificus. FEMS Microbiol Lett 174:207-214.
    2. Bisharat N, Agmon V, Finkelstein R, Raz R, Ben-Dror G, Lerner L, Soboh S, Colodner R, Cameron DN, Wykstra DL, Swerdlow L, and 3rd Farmer JJ. 1999. Clinical, epidemiological, and microbiological features of Vibrio vulnificus biogroup 3 causing outbreaks of wound infection and bacteraemia in Israel. Lancet 354:1421-1424.
    3. Hoffmann TJ, Nelson B, Darouiche R, and Rosen T. 1988. Vibrio vulnificus septicemia. Arch Intern Med 148:1825-1827.
    4. Chan TY, Chow DP, Ng KC, Pan KW, and McBride GA. 1994. Vibrio vulnificus septicemia in a patient with liver cirrhosis. Southeast Asian J Trop Med Public Health 25:215-216.
    5. Hor LI, Chang YK, Chung CC, Lei HY, and Ou JT. 2000. Mechanism of high susceptibility of iron-overloading mouse to Vibrio vulnificus infection Microbiol Immunol 44:871-878.
    6. Amaro C, Biosca EG, Fouz B, Toranzo AE, and Garay E. 1994. Role of iron, capsule, and toxins in the pathogenicity of Vibrio vulnificus biotype 2 for mice. Infect Immun 62:759-763.
    7. Amaro C, Fouz B, Biosca EG, Marco-Noales E, and Collado R. 1997. The lipopolysaccharide O side chain of Vibrio vulnificus serogroup E is a virulence determinant for eels. Infect Immun 65:2475-2479.
    8. Simpson LM, and Oliver JD. 1983. Siderophore production by Vibrio vulnificus. Infect Immun 41:644-649.
    9. Litwin CM, and Bryne BL. 1998. Cloning and characterization of an outer membrane protein of Vibrio vulnificus required for heme utilization: regulation of expression and determination of the gene sequence. Infect Immun 66:3134-3141.
    10. Paranjpye RN, Lara JC, Pepe JC, Pepe CM, and Strom MS. 1998. The type IV leader peptidase/N-methyltransferase of Vibrio vulnificus controls factors required for adherence to HEp-2 cells and virulence in iron-overloaded mice. Infect Immun 66:5659-5668.
    11. Kreger A, and Lockwood D. 1981. Detection of extracellular toxin(s) produced by Vibrio vulnificus. Infect Immun 33:583-590.
    12. Miyoshi N, Shimizu C, Miyoshi S, and Shinoda S. 1987. Purification and characterization of Vibrio vulnificus protease. Microbiol Immunol 31:13-25.
    13. Gray LD, and Kreger AS. 1985. Purification and characterization of an extracellular cytolysin produced by Vibrio vulnificus. Infect Immun 48:62-72.
    14. Teata, J, Daniel LW, and Kreger AS. 1984. Extracellular phospholipase A2 and lysophospholipase produced by Vibrio vulnificus. Infect Immun 45:458-463.
    15. Miyoshi S, and Shinoda S. 1992. Activation mechanism of human hageman factor-plasma kallikrein-kinin system by Vibrio vulnificus metalloprotease. FEBS Lett 308:315-319.
    16. Miyoshi S, Kawata K, Tomochika K, Shinoda S, Yamamoto S. 2001. The C-terminal domain promotes the hemorrhagic damage caused by Vibrio vulnificus metalloprotease. Toxicon 39:1883-6.
    17. Nishina Y, Miyoshi S, Nagase A, and Shinoda S. 1992. Significant role of an exocellular protease in utilization of heme by Vibrio vulnificus. Infect Immun 60: 2128-2132.
    18. Park JW, Ma SN, Song ES, Song CH, Chae MR, Park BH, Rho RW, Park SD, and Kim HR. 1996. Pulmonary damage by Vibrio vulnificus cytolysin. Infect Immun 64:2873-2876.
    19. Kang BH, Jhee EC, Koo BS, Yang JY, Park BH, Kim JS, Rho HW, Kim HR, and Park JW. 2001. Induction of nitric oxide synthase expression by Vibrio vulnificus cytolysin. Biochem Biophys Res Commun 290:1090-1095.
    20. Lin W, Fullner KJ, Clayton R, Sexton JA, Rogers MB, Calia KE, Calderwood SB, Fraser C, and Mekalanos JJ. 1999. Identification of a Vibrio cholerae RTX toxin gene cluster that is tightly linked to the cholera toxin prophage. Proc Natl Acad Sci U S A 96:1071-1076.
    21. Fullner KJ, Lencer WI, and Mekalanos JJ. 2001. Vibrio cholerae-induced cellular responses of polarized T84 intestinal epithelial cells are dependent on production of cholera toxin and the RTX toxin. Infect Immun 69:6310-6317.
    22. Fullner KJ, and Mekalanos JJ. 2000. In vivo covalent cross-linking of cellular actin by the Vibrio cholerae RTX toxin. EMBO J 19:5315-5323.
    23. Bina JE, and Mekalanos JJ. 2001. Vibrio cholerae tolC is required for bile resistance and colonization. Infect Immun 2001. 69:4681-4685.
    24. Sharff A, Fanutti C, Shi J, Calladine C, and Luisi B. 2001. The role of the TolC family in protein transport and multidrug efflux. From stereochemical certainty to mechanistic hypothesis. Eur J Biochem 268:5011-5026.
    25. Vakharia H, German GJ, and Misra R. 2001. Isolation and characterization of Escherichia coli tolC mutants defective in secreting enzymatically active alpha-hemolysin. J Bacteriol 183:6908-6916.
    26. Koronakis V, Sharff A, Koronakis E, Luisi B, and Hughes C. 2000. Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 405:914-919.
    27. Buchanan SK. 2001. Type I secretion and multidrug efflux: transport through the TolC channel-tunnel. Trends Biochem Sci 26:3-6.
    28. Hanahan D. 1983. Study of transformation of Escherichia coli with plasmids. J Mol Biol 166:557-580.
    29. Shigekawa K, and Dower WJ. 1988. Electroporation of eukaryotes and prokaryotes: a general approach to the introduction of macromolecules into cells. BioTECH 6:742-751.
    30. Litwin CM, and Calderwood SB. 1993. Cloning and genetic analysis of the Vibrio vulnificus fur gene and construction of a fur mutant by in vivo marker exchange. J Bacteriol 175:706-715.
    31. Veenstra J, Rietra CP, and Stoutenbeel JM, 1992, Infection by an indole-negative variant of Vibrio vulnificus transmitted by eels. J Infect Dis 166:209-210.
    32. Brennt CE, Wright AC, Dutta SK, and Morris JG. 1991. Growth of Vibrio vulnificus in serum from alcoholics: association with high transferrin iron saturation. J Infect Dis 164:1030-1032.
    33. Bullen JJ, Spalding PB, Ward CG, and Gutteridge JM. 1991. Hemochromatosis, iron and septicemia caused by Vibrio vulnificus. Arch Intern Med 151:1606-1609.
    34. Kim HR, Rho HW, Jeong MH, Park JW, Kim JS, Park BH, and Park SD. 1993. Hemolytic mechanism of cytolysin produced from Vibrio vulnificus. Life Sci 53:571-577.
    35. Chuang YC, Ko WC, Wang JW, Liu JW, Kuo CF, Wu JJ, and Huang KJ. 1998. Minocycline and cefotaxime in the treatment of experimental murine Vibrio vulnificus infection. Antimicro Agent Chemother 42:1319-1322.
    36. Grant KA, Belandia IU, Dekker N, Richardson PT, and Park SF. 1997. Molecular characterization of pldA, the structural gene of phospholipase A from Campylobacter coli and its contribution to cell-associated hemolysis. Infect Immun 65:1172-1180.
    37. Davison J, Heusterspreute M, Chevalier N, Ha-Tai V, and Brunel F. 1987. Vector with restriction site banks. V. pJRD215, a wild-host-range cosmid vector with mutiple cloning sites. Gene 51:275-280.
    38. Donnenberg MS, and Kaper JB. 1991. Construction of an eae gene deletion mutant of enteropathogenic Escherichia coli by using a positive –selection suicide vector. Infect Immun 59:4310-4317.
    39. Julio SM, Heithoff DM, Provenzano D, Klose KE, Sinsheimer RL, Low DA, and Mahan MJ. 2001. DNA adenine methylase is essential for viability and plays a role in the pathogenesis of Yersinia pseudotuberculosis and Vibrio cholerae. Infect Immun 2001 69: 7610-7615.
    40. 李寧宜,創傷弧菌磷脂酶之定序及磷脂酶缺失突變株之分離和特性分析。成功大學微生物暨免疫學研究所碩士論文89年6月。
    41. 范忠錦,創傷弧菌不產生細胞溶解毒素突變株及不產細胞溶解毒素突變株和蛋白酶雙突變株之分離和特性分析。成功大學微生物暨免疫學研究所碩士論文,88年七月。

    下載圖示 校內:2003-08-27公開
    校外:2003-08-27公開
    QR CODE