| 研究生: |
陳昭廷 Chen, Cha'o-Ting |
|---|---|
| 論文名稱: |
應用Laplace Adomain分解法於非牛頓冪次律流體流經曲面邊界層流之熱流場分析 Laplace Adomain Decomposition Method for Analysis of Non-Newtonian Power-Law Fluid Boundary Layer Flow over Curved Surface |
| 指導教授: |
陳朝光
Chen, Cha'o-Kuang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | Laplace Adomain分解法 、非牛頓冪次律流體 、曲率 、輻射效應 、耗散效應 、熵產生率 |
| 外文關鍵詞: | Laplace Adomain Decomposition Method(LADM), Non-Newtonian Power Law Fluid, Curvature, Radiation, Viscous dissipation, Rate of entropy generation |
| 相關次數: | 點閱:86 下載:15 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文探討非牛頓冪次律流體流經曲面之邊界層流流場、熱傳遞與應用熱力學第二定律分析熱流場內的熵產生率問題,並分析在具有輻射、黏滯耗散之下熱流場的速度與溫度分布。利用非牛頓冪次律模型描述流體性質,以此研究因為表面曲率(?)及非牛頓冪次律流體之流動特性指數(n)而產生曲面上之流體流動、熱傳遞及熵產生率隨位置之變化的物理現象。透過相似轉換(Similarity Transformation)將統御方程式由非線性偏微分方程組轉換為非線性常微分方程組,並以流動特性指數n、表面曲率?及與溫度有關之參數(普朗特數Pr,埃克特數Ec,輻射參數Rd )分析曲面系統的熱流場。
應用Laplace Adomain分解法解決曲面熱流場的統御方程式。Laplace Adomain分解法為結合Laplace轉換與Adomain分解法的數值方法,適合用於分析非線性系統的微分方程組,其數值結果為一截斷級數解,搭配Pade 近似能更快速地達到收斂,能夠有效率地處理複雜物理系統的問題。
研究結果可知,對擬塑性流體而言,當流動特性指數(n)越大,速度邊界層厚度越大(速度擴散越慢),且表面摩擦係數越小(流動阻力越小)。而對於膨脹性流體而言,當流動特性指數(n)越大,速度邊界層厚度越小(速度擴散越快),且表面摩擦係數越小(流動阻力越小)。但流動特性指數(n)的增加,無論對於任一種流體而言,溫度邊界層厚度皆會增加。藉由探討曲率?對曲面流動系統的影響可知: 曲率?越大,速度邊界層厚度變小,溫度邊界層厚度亦隨之變小。但對於溫度邊界層之影響不大,由此結果可進一步推斷,熱對流基本定律(牛頓冷卻定律)適用於任意外型之物體,並能確定其結果的準確性。除此之外,本文更進一步探討曲面邊界層內部的不可逆性變化。
In this study, we discuss the Non-Newtonian Power-Law Fluid boundary layer flow and heat transfer phenomenon over curved surface, the application of the second-law of thermodynamics to the problems about the rate of entropy generation, and analyze the velocity and temperature distribution under the effect of radiation and viscous dissipation. Using the model of Non-Newtonian Power-Law Fluid to describe the local variation of fluid flow, heat transfer, and rate of entropy generation. The governing equations are transformed from nonlinear partial differential equations to nonlinear ordinary equations by similarity transformation. Analyze the thermo-fluids field by Flow Behavior Index (n), curvature (?), and the parameters related to temperature(Prantl number, Eckert number, and radiation parameter).
The governing equations are solved numerically by Laplace Adomain Decomposition Method (LADM), which is combined with Laplace Transform and Adomain Decomposition Method (ADM). This method is prefer to use to analyze the differential equations of nonlinear systems because the numerical result is a truncated series solution. Combine LADM with Pade Approximation, the series solution will converge faster. LADM have the ability to deal with the problems of complex systems.
For Pseudoplastic fluid, the increase of Flow Behavior Index (n) will cause the increase of the velocity boundary layer thickness, but the decrease of Skin-Friction coefficient. The effect of Skin-Friction coefficient will still be the same for Dilatant fluid, but the effect of velocity boundary layer thickness is opposite. By discussing the effect of curvature, we can know that velocity and temperature boundary layer thickness will both decrease. But the increase of temperature boundary layer thickness is slight. By this result, we can further ensure that the fundamental law of heat convection (Newton's cooling law) is suitable for the object with any shape. Additionally, we further discuss the variation of irreversibilities in the interior of curved boundary layer.
[1] Crane LJ. Flow past stretching plate. Z Angew Math Phys 1970;21:645-7.
[2] Gupta P, Gupta A, Heat and mass transfer on a stretching sheet with suction orblowing. Canad J Chem Eng 1977;55:744-6.
[3] Banks W. Similarity solutions of the boundary-layer equations for a stretching wall. J Me ́c The ́or Appl 1983;2:375-92.
[4] Magyari E, Keller B. Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface. J Phys D Appl Phys 1999;32:577-85.
[5] Ahmad A, Asghar S. Flow and heat transfer over hyperbolic stretching sheets. Appl Math Mech 2012;33:445-54.
[6] Rajagopal KR. Gupta AS. An exact solution for the flow of a non-Newtonian fluid past an infinite plate. Meccanica 1984;19:158-60.
[7] Andersson H, Kumaran V. On sheet-driven motion of power-law fluids. Int J Non-Linear Mech 2006;41:1228-34.
[8] Jalil M, Asghar S, Mushtaq M. Analytical solutions of the boundary layer flow of power-law fluid over a power-law stretching surface. Common Nonlinear Sci Number Simulat 2013;18:1143-50.
[9] Jalil M, Asghar S. Flow of power-law fluid over a stretching surface: a Lie group analysis. Int J Non-Linear Mech 2012;48:65-71.
[10] Hayat T, Shafiq A, Mustafa M, Alsaedi A. Boundary-layer flow of Walter"s" ^"," B fluid with Newtonian heating. Z Naturforsch 2015;70:333-41.
[11] Ali N, Khan S, Abbas Z. Hydromagnetic flow and heat transfer of a Jeffrey fluid over an oscillatory stretching surface. Z Naturforsch 2015;70:567-76.
[12] Sajid M, Ali N, Javed T, Abbas Z. Stretching a curved surface in a viscous fluid. Chin Phys Lett 2010;27:024703.
[13] Sanni KM, Asghar S, Jalil M, Okechi NF. Flow of viscous fluid along a nonlinearly stretching curved surface. Results Phys 2017;7:1-4.
[14] Adomain G. Solving frontier problems modelled by nonlinear partial differential equations 1991;22:91-4.
[15] Adomain G. Delayed Nonlinear Dynamical Systems 1995;22:77-9.
[16] Abbaoui K, Cherruault Y. Convergence of Adomain^"," s method applied to differential equations. 1994;28:103-9.doi:10.1108/03684929910277779.
[17] Cherruault Y, Adomain G. Decomposition methods: A new proof of convergence. Math Comput Model 1993;18:103-6. doi:10.1016/0895-7177(93)90233-O.
[18] Cherruault Y, Saccomandi G, Some B. New results for convergence of Adomain^"," s method applied to integral equations. Math Comput Model 1992;16:85-93.
[19] Cherruault Y. Convergence of Adomain^"," s Method. Kybernetes 1993;18:31-8.
[20] Hosseini MM, Nasabzadeh H. On the convergence of Adomain decomposition method. Appl Math Comput 2006;182:536-43. doi:10.1016/j.amc.2006.04.015.
[21] Abdelrazec A, Pelinovsky D. Convergence of the Adomain decomposition method for initial-value problems. Numers Methods Partial Differ Equation 2007;23:904-22. doi:10.1002/num.
[22] Cordshooli GA, Vahidi a. R. Phase synchronization of Van der Pol-Duffing oscillators using decomposition method. Adv Stud Theor Phys 2009;3:429-37.
[23] Wazwaz A-M, EI-Sayed SM. A new modification of the Adomain decomposition method for linear and nonlinear operators. Appl Math Comput 2001;122:393-405.
[24] Wazwaz A-M. A new algorithm for calculating adomain polynomials for nonlinear operators. Appl Math Comput 2000;111:33-51.
[25] Hasan YQ, Zhu LM. Modified Adomain decomposition method for singular initial value problems in the second-order ordinary differential equations. Surv Math Its Appl 2008;3:183-93.
[26] Ramana P V., Raghu Prasad BK. Modified Adomain decomposition method for Van der Pol equations. Int J Non Linear Mech 2014;65:121-32. doi:10.1016/j.ijnonlinmec.2014.03.006.
[27] Khuri SA. A Laplace decomposition algorithm applied to a class of nonlinear differential equations. Appl Math Comput 2001;4:141-55.
[28] Singh N, Kumar M. Adomain decomposition method for solving higher order boundary value problems. Math Theory Model 2011;2:11-23.
[29] Tsai P-Y, Chen C-K. Free vibration of the nonlinear pendulum using hybrid Laplace Adomain decomposition method. Int J Numer Method Biomed Eng 2011;27:262-72. doi:10.1002/cnm.
[30] Yang YT, Chien SK, Chen CK. A double decomposition method for solving the periodic base temperature in convective longitudinal fins. Energy Convers Manag 2008;49:2910-6. doi:10.1016/j.enconman.2008.03.003.
[31] Yang YT, Chang CC, Chen CK. A double decomposition method for solving the annular hyperbolic profile fins with variable thermal conductivity. Heat Transf Eng 2010;31:1165-72. doi:10.1080/01457631003689294.
[32] 蔡培毅,“Laplace Adomain混合分解法應用於非線性物理系統之研究,”國立成功大學機械工程學系碩士班論文, 2011.
[33] 陳柏維,“Laplace Adomain 混合分解法應用於邊界層流流經楔型板之研究,”國立成功大學機械工程學系碩士班論文, 2011.
[34] Hajihosseini A., and Soltanalizadeh B., “Application of Laplace Adomain Pad"e" ́ Approximant to Solve Exponential Stretching Sheet Problem in Fluid Mechanics, ” Journal of Novel Applied Science, 2(2S), pp. 940-946, 2013.
[35] 陳郁婷, “應用Laplace Adomain分解法於變化輪廓環形鰭片之週期性溫度邊界的熱傳遞與熱應力分析,” 國立成功大學機械工程學系碩士班論文, 2016.
[36] 曾嘉祥, “應用Laplace Adomain分解法於非線性樑之振動與大度問題研究,” 國立成功大學機械工程碩士班論文, 2019.
[37] 吳昱成, “Laplace/Adomain混合解法應用於非牛頓冪次律流體流經楔型板之邊界層流受磁場影響之熱流特性研究,” 國立成功大學機械工程學系碩士班論文, 2019.
[38] 陳昭廷, “Laplace/Adomain混合解法於非牛頓冪次律流體流經平板之邊界層流受磁場、輻射、耗散效應之熱流特性研究,” 中國機械工程學會第三十七屆全國學術研討會論文集, 2020.
[39] Cherruault Y. and Adomain G., Decomposition methods: a new proof of convergence, Math. Comput. Modelling, 18(12), 103-103, (1993).
[40] Rach R., Baghdasarian A., and Adomain G., Differential equations with singular coefficients, Appl. Math. Lett., 47(2/3), 179-184, (1992).
[41] Wazwaz A.M., A new algorithm for solving differential equations of the Lane-Emden type, Appl. Math. Comput., 118(2/3), 287-310, (2001).
[42] Adomain G., Solving Frontier Problems of Physics: The Decomposition Method, Kluwer, Boston, (1994).
[43] 陳朝光教授,熱對流學講義(座標轉換章節)。
[44] Sanni K.M., Asghar S.. Flow of viscous fluid along a nonlinearly stretching curved surface. Results in Physics 7(2017) 1-4.
[45] Sanni Kehinde M., Qumar Hussain. Heat Transfer Analysis for Non-linear Boundary Driven Flow Over a Curved Stretching Sheet With a Variable Magnetic Field. Frontiers in Physics. doi: 1.3389/fphy.2020.00113.
[46] Abbas Z., Sajid M.. Hydromagnetic slip flow of nanofluid over a curved stretching surface with heat generation and thermal radiation. Journal of Mocular Liquids 215(2016) 756-762.
[47] Rosseland S., Theoretical Astrophysics: Atomic Theory and the Analysis of Steller Atmosphere and Envelpoes, Oxford, UK: Clarendon, 1936.
[48] Adrian Bejan. Second Law analysis in heat transfer. Energy Vol. 5, pp. 721-732. Pergamon Press Ltd., 1980. Printed in Great Britian.
[49] Abbas Z, Naveed M, Sajid M. Heat transfer analysis for stretching flow over a curved surface with magnetic flow. J Eng Thermophys 2013;22:337-45.