簡易檢索 / 詳目顯示

研究生: 楊雅媛
Yang, Ya-Yuan
論文名稱: 血漿蛋白質組學及開發更環保的蛋白質純化工作流程
Blood Plasma Proteomics and the Development of Environmental Friendly Protein Purification Workflow
指導教授: 陳淑慧
Chen, Shu-Hui
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 67
中文關鍵詞: 親水性及疏水性深層共晶溶劑血漿中低豐度蛋白的富集血漿蛋白質組學雌激素化蛋白質譜儀
外文關鍵詞: Hydrophilic and hydrophobic deep eutectic solvents, Enrichment of low-abundance proteins in plasma, Plasma proteomics, Estrogen-protein adduct, Mass spectrometry
相關次數: 點閱:64下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 蛋白質樣品的上機前處理是整個蛋白質組分析流程中必不可少的步驟,在以傳統的蛋白質純化的實驗過程中所使用的有機溶劑和帶有腐蝕性的酸性物質經常帶來環境的危害,多數耗材以及廢液難以回收再利用,因此開發一個符合綠色化學概念的純化過程是我們希望達到的目標。
    我們在文中探討了目前在生物分子提取純化應用方面熱門的綠色溶劑,而其中基於膽鹼鹽以及三甲基甘氨酸的深層共晶溶劑提供的熱穩定性質以及幫助蛋白保持天然構型,避免失去天然結構的特性,不但能夠避免蛋白之間非期望的共價聚集,也十分有利於生物分子的提取,在本文中以多種可再生天然物來構成的親水性和疏水性深層共晶溶劑以液-液均相萃取法分別對於不同蛋白純化方面的評估;在親水性深層共晶的部分,相較於探討萃取效率,我們更專注於探討萃取後的DES層中的蛋白如何提升反萃取的效率,在實驗流程中探討了加入乙醇,硫酸銨,聚乙二醇以及調整pH值,溫度在反萃取方面的可能性,並將此反萃取應用於血漿應用的方面,使在血漿樣品最高豐度的蛋白:白蛋白,轉鐵蛋白以及IgG可以大幅度的去除,藉此使其他較低豐度的蛋白占比得以提升。
    此外,接續實驗室過去的實驗,已知白蛋白以及組蛋白上修飾醌化雌激素會在500nm波長激發後,於595nm波長處發出強烈的螢光,利用這個特性,我們可以利用SDS-PAGE上的螢光條帶訊號以及螢光圖譜來追蹤修飾醌化雌激素蛋白加成物的訊號,已知DES萃取的機制與蛋白的表面性質有關連,醌化雌激素的修飾將使蛋白表面的部分位點變得較為疏水,於是有了用疏水性DES萃取醌化雌激素的想法,藉由使用3種不同以薄荷醇,百里酚為設計主軸的低黏滯性的疏水性DES來萃取上述樣品,設計一個可以將醌化雌激素蛋白加成物分離出來的實驗流程。

    The purpose of this thesis is to explore the application of deep eutectic solvent. To enable the detection of the signal belongs to low abundance protein in plasma, the depletion of high abundance protein is an essential step, during whole proteomics. We found that after protein extraction with hydrophilic DES, high abundance protein can be removed by adding PEG-ammonium sulfate in back-extraction process. In another part, fluorescence spectra proved that the hydrophobic DES which composed with betaine and thymol has a potential to make 4-OHE2-proteins be enriched.

    學位考試證明 Ⅱ 中文摘要 Ⅲ Abstract Ⅳ 結論 Ⅳ Summary Ⅴ 致謝 Ⅷ 簡寫表 Ⅸ 目錄 Ⅹ 圖目錄 Ⅺ 表目錄 ⅩⅢ 第一章 文獻回顧 1 1.1、實驗目的 1 1.2、綠色溶劑離子液體以及深層共晶溶劑之比較 2 1.3深層共晶溶劑實際應用的範例 4 1.4、深層共晶溶劑在蛋白質領域方面的應用潛在的瓶頸及解方 10 1.5、血漿中的生物標誌物 11 1.6、高豐度蛋白的消除以及低豐度蛋白的富集 11 1.7、蛋白樣品的簡介 12 第二章 實驗方法 14 2.1、實驗藥品與器材,軟體及資料庫來源 14 2.1.1、實驗藥品 14 2.1.2、實驗儀器與耗材 17 2.2.1、蛋白質定量方法 18 2.2.2、十二烷基硫酸鈉聚丙酰胺凝膠電泳(SDS-PAGE) 18 2.2.3、傳統蛋白質純化方式的比較 20 2.3.1、親水性DES 21 2.3.2、蛋白質提取(親水性DES) 22 2.4.1、疏水性des 25 2.4.2、疏水性des的製備 29 2.4.3、蛋白質提取(疏水性HDES) 30 第三章 實驗結果與討論 34 3.1、親水性DES萃取之結果 34 3.2、疏水性DES萃取雌激素蛋白之結果 36 3.3.1、醌化雌激素白蛋白之結果 37 3.3.2、醌化雌激素組蛋白之結果 38 第四章 結論 40 第五章 附錄 40 血漿樣品的蛋白質組學研究 40 5.1.1、實驗目的 41 5.1.2、以表觀遺傳修飾的觀點來探討蛋白質上調與下調機制 41 5.2、血漿樣品的基本資訊以及儲存方式 42 5.3、候選的目標蛋白選取來源 42 5.4、樣品的前處理流程 46 5.5、蛋白質體學與質譜應用 46 5.5.1、質譜分析基本原理 50 5.5.2、質譜技術於蛋白質鑑定之應用 51 5.5.3、質譜掃描模式的介紹 53 5.5.4、質譜儀之蛋白質體分析 54 5.5.5、質譜運行的條件 56 5.6、以質譜分析軟體來進行定性以及定量分析 56 5.6.1、質譜肽搜尋引擎軟體 56 5.6.2、質譜分析軟體的下載,操作以及參數設置 57 參考文獻 63

    [1] Glavič; Peter; Rebeka Lukman. Review of sustainability terms and their definitions. J. Clean. Prod., 2007,15.18, 1875-1885. DOI: 10.1016/j.jclepro.2006.12.006
    [2] Paul Anastas; Nicolas Eghbali. Green Chemistry: Principles and Practice. Chem. Soc. Rev., 2010, 39, 301-312. DOI: 10.1039/B918763B
    [3] Justyna Płotka-Wasylka; Miguel de la Guardia; Vasil Andruch; Mária Vilková. Deep eutectic solvents vs ionic liquids: Similarities and differences. Microchem. J., 2020, 159, 105539.
    [4] Omar Green; Simonida Grubjesic; Sungwon Lee; Millicent A. Firestone. The Design of Polymeric Ionic Liquids for the Preparation of Functional Materials. Polym Rev, 2009, 49, 339-360. DOI: 10.1080/15583720903291116
    [5] James H. Davis, Jr.; Charles M. Gordon; Claus Hilgers; Peter Wasserscheid. Synthesis and Purification of Ionic Liquids. Ionic Liquids in Synthesis, 2002, 7-40.
    [6] Debbie S. Silvester; Richard G. Compton. Electrochemistry in Room Temperature Ionic Liquids: A Review and Some Possible Applications. Z Phys Chem (N F), 2006, 220-10, 1247-1274.
    [7] Emma L. Smith; Andrew P. Abbott; Karl S. Ryder. Deep eutectic solvents (DESs) and their applications. Chem. Rev., 2014, 114.21, 11060-11082. DOI: 10.1021/cr300162p
    [8] Marina Cvjetko Bubalo; Natka Ćurko; Marina Tomašević; Karin Kovačević Ganić; Ivana Radojčić Redovniković . Green extraction of grape skin phenolics by using deep eutectic solvents. Food Chem., 2016, 200, 159-166. DOI: 10.1016/j.foodchem.2016.01.040
    [9] Emma L. Smith; Andrew P. Abbott; and Karl S. Ryder. Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2014, 114, 21, 11060–11082
    [10] Rajan Patel; Meena Kumari; Abbul Bashar Khan. Recent advances in the applications of ionic liquids in protein stability and activity: a review. Appl. Biochem. Biotechnol., 2014, 172, 3701-3720. DOI: 10.1007/s12010-014-0813-6
    [11] Johnathan T. Gorke; Johnathan T. Gorke; Friedrich Srienc; Romas J. Kazlauskas.
    Deep Eutectic Solvents for Candida antarctica Lipase B-Catalyzed Reactions, ACS., 2010, 14, 169-180. DOI: 10.1021/bk-2010-1038.ch014
    [12] Christopher R. Day; Stephen A. Kempson. Betaine chemistry, roles, and potential use in liver disease. Biochim Biophys Acta Gen Subj, 2016, 1860.6, 1098-1106. DOI: 10.1016/j.bbagen.2016.02.001
    [13] Teresa Caldas; Nathalie Demont-Caulet; Alexandre Ghazi; Gilbert Richarme. Thermoprotection by glycine betaine and choline. Microbiology, 1999, 145.9, 2543-2548. DOI: 10.1099/00221287-145-9-2543
    [14] D.W. Bolen. Effects of naturally occurring osmolytes on protein stability and solubility: issues important in protein crystallization. Methods, 2004, 34.3, 312-322. DOI: 10.1016/j.ymeth.2004.03.022
    [15] Kaijia Xu; Yuzhi Wang; Yanhua Huang; Na Li, Qian Wen. A green deep eutectic solvent-based aqueous two-phase system for protein extracting. Anal. Chim. Acta, 2015, 864, 9-20. DOI: 10.1016/j.aca.2015.01.026
    [16] Panli Xu; Yuzhi Wang; Jing Chen; Xiaoxiao Wei; Wei Xu; Rui Ni; Jiaojiao Meng; Yigang Zhou. Development of deep eutectic solvent-based aqueous biphasic system for the extraction of lysozyme. Talanta, 2019, 202, 1-10. DOI: 10.1016/j.talanta.2019.04.053
    [17] Emmanuel A. Oke; Sushma P. Ijardar. Advances in the application of deep eutectic solvents based aqueous biphasic systems: An up-to-date review. Biochem. Eng. J., 2021, 176, 108211
    [18]Youyi Wu; Mengxuan Chen; Xuedong Wang; Yunlu Zhou; Mengqi Xu; Zhanen Zhang.
    Development and validation of vortex-assisted dispersive liquid–liquid microextraction method based on solidification of floating hydrophobic deep eutectic solvent for the determination of endocrine disrupting chemicals in sewage. Microchem. J., 2021, 163, 105915. DOI: 10.1016/j.microc.2020.105915
    [19] Rong Wang; Wenqing Li; Zilin Chen. Solid phase microextraction with poly(deep eutectic solvent) monolithic column online coupled to HPLC for determination of non-steroidal anti-inflammatory drugs. Anal. Chim. Acta, 2018, 1018, 111-118. DOI: 10.1016/j.aca.2018.02.024
    [20]Tomáš Křížek; Miroslava Bursová; Rachel Horsley; Martin Kuchař ; Petr Tůma; Radomír Čabala; Tomáš Hložek. Menthol-based hydrophobic deep eutectic solvents: Towards greener and efficient extraction of phytocannabinoids. J. Clean. Prod., 2018, 193, 391-396. DOI: 10.1016/j.jclepro.2018.05.080
    [21] Pierre-Alann Cablé; Yann Le Brech; Fabrice Mutelet. Liquid-liquid extraction of phenolic compounds from aqueous solution using hydrophobic deep eutectic solvents. J. Mol. Liq., 2022, 366, 120266. DOI: 10.1016/j.molliq.2022.120266
    [22] Mohammad Reza Afshar Mogaddam; Mir Ali Farajzadeh; Mustafa Tuzen; Abolghasem Jouyban; Jalil Khandaghi. Microchem. J., 2021, 168, 106433. DOI: 10.1016/j.microc.2021.106433
    [23] Andrey Shishov; Renata Chromá; Christina Vakh; Juraj Kuchár; András Simon; Vasil Andruch; Andrey Bulatov. In situ decomposition of deep eutectic solvent as a novel approach in liquid-liquid microextraction. Anal. Chim. Acta, 2019, 1065, 49-55. DOI: 10.1016/j.aca.2019.03.038
    [24] Julian A. J. Jaros; Paul C. Guest; Sabine Bahn; Daniel Martins-de-Souza Affinity depletion of plasma and serum for mass spectrometry-based proteome analysis. Proteomics for Biomarker Discovery, 2013, protocol, 1-11. DOI: 10.1007/978-1-62703-360-2_1
    [25] You, Jueng Soo; Peter A. Jones. Cancer genetics and epigenetics: two sides of the same coin?. Cancer cell, 2012, 22.1, 9-20. DOI:10.1016/j.ccr.2012.06.008
    [26] Renato Millioni; Serena Tolin ,Lucia Puricelli; Stefano Sbrignadello; Gian Paolo Fadini; Paolo Tessari; Giorgio Arrigoni. High abundance proteins depletion vs low abundance proteins enrichment: comparison of methods to reduce the plasma proteome complexity. PloS one, 2011, 6.5, e19603. DOI: 10.1371/journal.pone.0019603
    [27]James D. Doecke; PhD; Simon M. Laws, PhD; Noel G. Faux, PhD. Blood-based protein biomarkers for diagnosis of Alzheimer disease. Archives of neurology, 2012, 69.10, 1318-1325. DOI: 10.1001/archneurol.2012.1282
    [28] Maja Thim Larsen; Matthias Kuhlmann; Michael Lykke Hvam; Kenneth A. Howard. Albumin-based drug delivery: harnessing nature to cure disease. Mol. Cell. Biol., 2016, 4, Article number: 3. DOI: 10.1186/s40591-016-0048-8
    [29] Joseph Dumpler; Felicitas Peraus; Verena Depping; Bryndís Stefánsdóttir; Martin Grunow; Ulrich Kulozik. Modelling of heat stability and heat-induced aggregation of casein micelles in concentrated skim milk using a Weibullian model. Int J Dairy Technol, 2018, 71-3, 601-612.
    [30] Adriana Huerta-Viga; Sander Woutersen. Protein Denaturation with Guanidinium: A 2D-IR Study. J. Phys. Chem. Lett.,2013, 4-20, 3397–3401
    [31] Alexey K Shaytan; David Landsman; Anna R Panchenko. Nucleosome adaptability conferred by sequence and structural variations in histone H2A–H2B dimers. Curr. Opin. Struct. Biol., 2015, 32, 48-57. DOI: 10.1016/j.sbi.2015.02.004
    [32] Dante Cicchetti; Susan Hetzel; Fred A. Rogosch; Elizabeth D. Handley; Sheree L. Toth. An investigation of child maltreatment and epigenetic mechanisms of mental and physical health risk. Dev. Psychopathol, 2016, 28.4pt2, 1305-1317. DOI:10.1017/S0954579416000869
    [33] Goldberg, Aaron D.; C. David Allis; Emily Bernstein. Epigenetics: a landscape takes shape. Cell, 2007, 128.4, 635-638. DOI: 10.1016/j.cell.2007.02.006
    [34] Hamilton, James P. Epigenetics: principles and practice. Dig Dis, 2011, 29.2, 130-135. DOI: 10.1159/000323874
    [35] Torsten Klengel; Julius Pape; Elisabeth B. Binder; Divya Mehta. The role of DNA methylation in stress-related psychiatric disorders. Neuropharmacology, 2014, 80, 115-132. DOI: 10.1016/j.neuropharm.2014.01.013
    [36] Natalie Weder MD; Huiping Zhang Ph; Kevin Jensen PhD; Bao Zhu Yang PhD; Arthur Simen MD,PhD; Andrea Jackowski PhD; Deborah Lipschitz MD; Heather DouglasPalumberi MA; Margrat Ge MA;, Francheska Perepletchikova PhD; Kerry O'Loughlin BA; James J. Hudziak MD; Joel Gelernter MD; Joan Kaufman PhD. Child abuse, depression, and methylation in genes involved with stress, neural plasticity, and brain circuitry. J Am Acad Child Adolesc Psychiatry, 2014, 53.4, 417-424. DOI: https://doi.org/10.1016/j.jaac.2013.12.025
    [37] Loo, Joseph A. Studying noncovalent protein complexes by electrospray ionization mass spectrometry. Mass Spectrom. Rev., 1997, 16.1 ,1-23. DOI: 10.1002/(SICI)1098-2787(1997)16:1<1::AID-MAS1>3.0.CO;2-L
    [38] Zhong Hongying; Sandra L. Marcus; Liang Li. Microwave-assisted acid hydrolysis of proteins combined with liquid chromatography MALDI MS/MS for protein identification. J. Am. Soc. Mass Spectrom., 2005, 16, 471-481. DOI: 10.1016/j.jasms.2004.12.017
    [39] Annette Michalski; Eugen Damoc; Jan-Peter Hauschild; Oliver Lange; Andreas Wieghaus ; Alexander Makarov; Nagarjuna Nagaraj; Juergen Cox; Matthias Mann; Stevan Horning. Mass Spectrometry-based Proteomics Using Q Exactive, a High-performance Benchtop Quadrupole Orbitrap Mass Spectrometer. Mol. Cell Proteomics, 2011, 10-9, M111.011015. DOI: 10.1074/mcp.M111.011015
    [40] Banerjee; Shibdas; Shyamalava Mazumdar. Electrospray ionization mass spectrometry: a technique to access the information beyond the molecular weight of the analyte. J. Anal. Chem. 2012, Article ID 282574. DOI: 10.1155/2012/282574
    [41] Neil L. Kelleher; Hong Y. Lin; Gary A. Valaskovic; David J. Aaserud; Einar K. Fridriksson; Fred W. McLafferty. Top down versus bottom up protein characterization by tandem high-resolution mass spectrometry. J. Am. Chem. Soc., 1999, 121.4, 806-812. DOI: 10.1021/ja973655h
    [42]Chait; Brian T. Mass spectrometry: bottom-up or top-down?. Science, 2006, 314.5796, 65-66. DOI: 10.1126/science.1133987
    [43] Zachery R. Gregorich; Ying-Hua Chang; Ying Ge. Proteomics in heart failure: top-down or bottom-up? Pflugers Arch., 2014, 466, 1199-1209. DOI: 10.1007/s00424-014-1471-9
    [44] Feifei Sun ; Haiguang Tan ; Yanshen Li; Marthe De Boevre ; Huiyan Zhang; Jinhui Zhou; Yi Li; Shupeng Yang. An integrated data-dependent and data-independent acquisition method for hazardous compounds screening in foods using a single UHPLC-Q-Orbitrap run. J. Hazard. Mater., 2021, 401, 123266. DOI: 10.1016/j.jhazmat.2020.123266
    [45] Ludovic C. Gillet; Pedro Navarro; Stephen Tate; Lukas Reiter; Ron Bonner;
    Ruedi Aebersold. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol. Cell Proteomics, 2012, 11.6, O111.016717. DOI: 10.1074/mcp.O111.016717
    [46] Jiapeng Li; Logan S. Smith; Hao-Jie Zhu. Data-independent acquisition (DIA): an emerging proteomics technology for analysis of drug-metabolizing enzymes and transporters. Drug Discov. Today, 2021, 39, 49-56. DOI: 10.1016/j.ddtec.2021.06.006

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE