簡易檢索 / 詳目顯示

研究生: 徐昇明
Hsu, Sheng-Ming
論文名稱: 藉由插入中間層二氧化矽奈米層改善n型氧化鋅與p型氮化鎵發光二極體的電激發光的表現
Improved performance of electroluminescence in a n-ZnO microrod/p-GaN-based light-emitting diodes with SiO2 inserting nanolayer
指導教授: 徐旭政
Hsu, Hsu-Cheng
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 71
中文關鍵詞: 氧化鋅微米柱偏振光學侷限層電子阻擋層發光二極體
外文關鍵詞: ZnO microrod, optical confinement, polarization emission, electron blocking confinement, light-emitting diode
相關次數: 點閱:156下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氧化鋅因為具有寬能隙(3.37eV)與大激子束縛能(60meV),使得氧化鋅成為一個具有潛力的短波長UV LED與LD半導體材料。在材料的結構上,氮化鎵因為與氧化鋅只有些微的晶格不匹配和相似的晶型,因此常被用來與氧化鋅做成p-n二極體。此外,氧化鋅微米柱還具有的六角柱結構,能使光侷限在氧化鋅內並提供了良好的光共振腔。
    為了增加UV偏振的n型氧化鋅/p型氮化鎵LED的發光強度,我們插入一層二氧化矽的奈米層,二氧化矽對於我們元件不只擁有光學侷限的效果,也擁有電子阻擋層的能力,可以使我們元件的光、電性都得到提升,這個結構也擁有良好的二極體特性和低電壓閥值 (4.5V) 和強壯的電激發光強度。並且我們利用偏振實驗來分析電激發光的光譜的來源。

    Zinc oxide (ZnO) has a wide band-gap (3.37eV) and also a large exciton binding energy (60meV) which makes it valuable for short wavelength UV light emitting diodes (LED) and laser device. As a construction material, GaN are often chosen due to its little lattice mismatch and crystallographic similarity with ZnO. A ZnO microrod has an advantage in its hexagonal microcavity which provides a superior resonant cavity for the light confinement.
    To enhance emitting intensity, an intermedium layer between the ZnO microrod and p-GaN thin film was employed. Here, we demonstrate an intense UV polarized single horizontal n-ZnO microrod/p-GaN heterojunction light-emitting diodes with a sandwiched SiO2 layer. The characterization of the fabricated device shows good diode behavior with low turn-on voltage of 4.5 V and strong electroluminescence (EL) intensity with dominant peak of 392 nm under the operation of forward injection currents. The enhanced EL performance is associated with optical confinement and carrier confinement effects by inserting SiO2 intermediate layer. The origin of EL emission bands can be confirmed by polarization-resolved EL measurement.

    摘要 I Abstract II 致謝 III Contents IV List of Tables VII List of Figures VIII 1 Introduction 1 1-1 Preface 1 1-2 Motivation 7 2 Background Theories 8 2-1 Characteristics of Zinc Oxide 8 2-2 Spontaneous Emission of Zinc Oxide 10 2-2-1 Ultraviolet Emission 10 2-2-2 Green Emission 12 2-3 Optical Confinement 13 2-3-1 Snell’s Law 13 2-3-2 Total Internal Reflection 14 2-4 Polarization Emission of the Near-Band-Edge Emission 16 2-5 p-n Heterojunction 19 2-5-1 Structure of a p-n Junction 19 2-5-2 Properties of a p-n Junction 19 2-6 Parasitic Resistance Estimation[38] 23 2-7 Contact between Metal and Semiconductors[42] 25 2-7-1 Schottky Barrier [42] 25 2-7-2 Ohmic Contact[42] 28 2-7-3 Metal Choose for n-ZnO and p-GaN for Ohmic Contact 30 2-7-4 Electron Blocking Layer 30 3 Experiment Process 32 3-1 Experimental Procedure 32 3-2 Chemical and Consumable 33 3-3 Growth System of ZnO Microrods 34 3-3-1 Chemical Vapor Transport System 34 3-3-2 Substrate Cleaning 36 3-3-3 Growth of ZnO Microrods 37 3-3-4 Transfer of ZnO Microrod 38 3-4 Devices Fabrication 39 4 Measurement Instrument 41 4-1 Raman Spectroscope 41 4-2 Field-Emission Scanning Electron Microscopy 44 4-3 Photoluminescence 45 4-4 Electroluminescence 47 4-5 Semiconductor Characterization System 49 5 Experiment Results and Discussions 50 5-1 SEM & Raman Analysis 50 5-2 Continuous-wave PL Analysis 51 5-3 Electrical and Optical Characterization Analysis 53 5-3-1 I-V Characteristic 53 5-3-1-1 I-V Characteristic of the Electrode 53 5-3-1-2 I-V Characteristic of the Device 54 5-3-2 Electroluminescence 55 5-3-3 Optical Confinement Analysis 57 5-3-4 Electron Blocking Layer & Wall-Plug Efficiency 58 5-4 Polarization Emission Analysis 60 5-5 Stability of Device 63 6 Conclusion 64 7 Prospective Aspects 65 8 Reference 66

    1. X. Li, J. J. Qi, Q. Zhang, Q. Wang, F. Yi, Z. Z. Wang, and Y. Zhang, "Saturated blue-violet electroluminescence from single ZnO micro/nanowire and p-GaN film hybrid light-emitting diodes," Appl. Phys. Lett. 102, 221103 (2013).
    2. G. Y. Zhu, J. T. Li, Z. S. Tian, J. Dai, Y. Y. Wang, P. L. Li, and C. X. Xu, "Electro-pumped whispering gallery mode ZnO microlaser array," Appl. Phys. Lett. 106, 021111 (2015).
    3. M. Ding, D. X. Zhao, B. Yao, B. Zhao, and X. J. Xu, "High brightness light emitting diode based on single ZnO microwire," Chem. Phys. Lett. 577, 88-91 (2013).
    4. J. Dai, C. X. Xu, and X. W. Sun, "ZnO-microrod/p-GaN heterostructured Whispering-Gallery-Mode microlaser diodes," Adv. Mater. 23, 4115 (2011).
    5. W. C. Lai, J. T. Chen, and Y. Y. Yang, "Optoelectrical and low-frequency noise characteristics of flexible ZnO-SiO2 photodetectors with organosilicon buffer layer," Opt. Express 21, 9643-9651 (2013).
    6. U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, "A comprehensive review of ZnO materials and devices," J. Appl. Phys. 98, 103 (2005).
    7. G. Y. Zhu, C. X. Xu, Y. Lin, Z. L. Shi, J. T. Li, T. Ding, Z. S. Tian, and G. F. Chen, "Ultraviolet electroluminescence from horizontal ZnO microrods/GaN heterojunction light-emitting diode array," Appl. Phys. Lett. 101, 041110 (2012).
    8. T. S. Lin, and C. T. Lee, "Performance investigation of p-i-n ZnO-based thin film homojunction ultraviolet photodetectors," Appl. Phys. Lett. 101, 221118 (2012).
    9. B. Xiang, P. W. Wang, X. Z. Zhang, S. A. Dayeh, D. P. R. Aplin, C. Soci, D. P. Yu, and D. L. Wang, "Rational synthesis of p-type zinc oxide nanowire arrays using simple chemical vapor deposition," Nano Lett. 7, 323-328 (2007).
    10. C. H. Park, S. B. Zhang, and S. H. Wei, "Origin of p-type doping difficulty in ZnO: The impurity perspective," Phys. Rev. B 66, 073202 (2002).
    11. A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, "Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO," Nat. Mater. 4, 42-46 (2005).
    12. S. G. Zhang, X. W. Zhang, Z. G. Yin, J. X. Wang, F. T. Si, H. L. Gao, J. J. Dong, and X. Liu, "Optimization of electroluminescence from n-ZnO/AlN/p-GaN light-emitting diodes by tailoring Ag localized surface plasmon," J. Appl. Phys. 112, 6 (2012).
    13. X. Li, J. Qi, Q. Zhang, Q. Wang, F. Yi, Z. Wang, and Y. Zhang, "Saturated blue-violet electroluminescence from single ZnO micro/nanowire and p-GaN film hybrid light-emitting diodes," Appl. Phys. Lett. 102, 221103 (2013).
    14. C.-F. Du, C.-H. Lee, C.-T. Cheng, K.-H. Lin, J.-K. Sheu, and H.-C. Hsu, "Ultraviolet/blue light-emitting diodes based on single horizontal ZnO microrod/GaN heterojunction," Nanoscale Res Lett 9, 1-6 (2014).
    15. H. Long, S. Z. Li, X. M. Mo, H. N. Wang, Z. Chen, Z. C. Feng, and G. J. Fang, "Enhanced electroluminescence using Ta2O5/ZnO/HfO2 asymmetric double heterostructure in ZnO/GaN-based light emitting diodes," Opt. Express 22, A833-A841 (2014).
    16. D. K. Wang, F. Wang, Y. P. Wang, Y. Fan, B. Zhao, and D. X. Zhao, "Interfacial emission adjustment in ZnO quantum dots/p-GaN heterojunction light-emitting diodes," J. Phys. Chem. C 119, 2798-2803 (2015).
    17. Y. F. Yao, C. H. Lin, C. Hsieh, C. Y. Su, E. Zhu, S. B. Yang, C. M. Weng, M. Y. Su, M. C. Tsai, S. S. Wu, S. H. Chen, C. G. Tu, H. T. Chen, Y. W. Kiang, and C. C. Yang, "Multi-mechanism efficiency enhancement in growing Ga-doped ZnO as the transparent conductor on a light-emitting diode," Opt. Express 23, 32274-32288 (2015).
    18. L. C. Zhang, Q. S. Li, L. Shang, F. F. Wang, C. Qu, and F. Z. Zhao, "Improvement of UV electroluminescence of n-ZnO/p-GaN heterojunction LED by ZnS interlayer," Opt. Express 21, 16578-16583 (2013).
    19. J. B. You, X. W. Zhang, S. G. Zhang, J. X. Wang, Z. G. Yin, H. R. Tan, W. J. Zhang, P. K. Chu, B. Cui, A. M. Wowchak, A. M. Dabiran, and P. P. Chow, "Improved electroluminescence from n-ZnO/AlN/p-GaN heterojunction light-emitting diodes," Appl. Phys. Lett. 96, 201102 (2010).
    20. X. M. Mo, H. Long, H. N. Wang, S. Z. Li, Z. Chen, J. W. Wan, Y. M. Feng, Y. P. Liu, Y. F. Ouyang, and G. J. Fang, "Enhanced ultraviolet electroluminescence and spectral narrowing from ZnO quantum dots/GaN heterojunction diodes by using high-k HfO2 electron blocking layer," Appl. Phys. Lett. 105, 063505 (2014).
    21. W. Z. Liu, H. Y. Xu, S. Y. Yan, C. Zhang, L. L. Wang, C. L. Wang, L. Yang, X. H. Wang, L. X. Zhang, J. N. Wang, and Y. C. Liu, "Effect of SiO2 spacer-layer thickness on localized surface plasmon-enhanced ZnO nanorod array LEDs," ACS Appl. Mater. Interfaces 8, 1653-1660 (2016).
    22. S. L. Chuang, and C. S. Chang, "K centr dot p method for strained wurtzite semiconductors," Physical Review B 54, 2491-2504 (1996).
    23. E. P. Oreilly, and A. R. Adams, "Band-structure engineering in strained semiconductor-lasers," Ieee J. quant. Electron. 30, 366-379 (1994).
    24. P. Waltereit, O. Brandt, M. Ramsteiner, A. Trampert, H. T. Grahn, J. Menniger, M. Reiche, R. Uecker, P. Reiche, and K. H. Ploog, "Growth of M-plane GaN(1(1)over-bar-00): A way to evade electrical polarization in nitrides," Phys. Status Solidi A-Appl. Mat. 180, 133-138 (2000).
    25. S. Ghosh, P. Waltereit, A. Thamm, O. Brandt, H. T. Grahn, and K. H. Ploog, "Comparative study of the electronic band structure of strained C-plane and M-plane GaN films by polarized photoreflectance spectroscopy," Phys. Status Solidi A-Appl. Res. 192, 72-78 (2002).
    26. C. Xu, J. Dai, G. Zhu, G. Zhu, Y. Lin, J. Li, and Z. Shi, "Whispering-gallery mode lasing in ZnO microcavities," Laser Photon Rev. 8, 469-494 (2014).
    27. L. Qian, L. Xifeng, and Z. Jianhua, "Microstructure, optical and electrical properties of gallium-doped ZnO films prepared by sol–gel method," J. Alloys Comp. 572, 175 (2013).
    28. X. Sheng, and W. Zhong Lin, "One-dimensional ZnO nanostructures: Solution growth and functional properties," Nano Res. 4, 1013-1098 (2011).
    29. A. B. Djurisic, A. M. C. Ng, and X. Y. Chen, "ZnO nanostructures for optoelectronics: Material properties and device applications," Prog. Quantum Electron. 34, 191-259 (2010).
    30. K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, "Correlation between photoluminescence and oxygen vacancies in ZnO phosphors," Appl. Phys. Lett. 68, 403-405 (1996).
    31. J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally, "Optical cavity effects in ZnO nanowire lasers and waveguides," Journal of Physical Chemistry B 107, 8816 (2003).
    32. H. S. Kang, J. S. Kang, S. S. Pang, E. S. Shim, and S. Y. Lee, "Variation of light emitting properties of ZnO thin films depending on post-annealing temperature," Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 102, 313-316 (2003).
    33. H. J. Fan, R. Scholz, F. M. Kolb, M. Zacharias, U. Gosele, F. Heyroth, C. Eisenschmidt, T. Hempel, and J. Christen, "On the growth mechanism and optical properties of ZnO multi-layer nanosheets," Appl. Phys. A 79, 1895 (2004).
    34. Ü. Özgür, Y. I. Alivov, A. T. C. Liu, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, "A comprehensive review of ZnO materials and devices," J. Appl. Phys. 98, 041301 (2005).
    35. B. X. Lin, Z. X. Fu, Y. B. Jia, and G. H. Liao, "Defect photoluminescence of undoping ZnO films and its dependence on annealing conditions," J. Electrochem. Soc. 148, G110-G113 (2001).
    36. Y. I. Alivov, U. Ozgur, S. Dogan, C. Liu, Y. Moon, X. Gu, V. Avrutin, Y. Fu, and H. Morkoc, "Forward-current electroluminescence from GaN/ZnO double heterostructure diode," Solid-State Electron. 49, 1693-1696 (2005).
    37. G. Jacopin, L. Rigutti, A. D. L. Bugallo, F. H. Julien, C. Baratto, E. Comini, M. Ferroni, and M. Tchernycheva, "High degree of polarization of the near-band-edge photoluminescence in ZnO nanowires," Nanoscale Res. Lett. 6, 501 (2011).
    38. F. Y. L. H. Z. Guo, and S. Y. Guo, Principles and applications of light-emitting diode (五南圖書出版公司, 2012).
    39. D. A. Neamen, Semiconductor Physics and Devices:Basic Principles (2011).
    40. K. C. S. A. S. Sedra, Microelectronic Circuits (2009).
    41. C. F. Klingshirn, Semiconductor Optics (Springer, 2007).
    42. S. K. B. Ben G. Streetman, Solid state electronic devices sixth edition.
    43. Y. Zhang, and D.-S. Diao, "Enhanced field emission from vertical ZnO nanoneedles on micropyramids " Chin. Phys. Lett. 26, 038101 (2009).
    44. R. Schlaf, H. Murata, and Z. H. Kafafi, "Work function measurements on indium tin oxide films," J. Electron Spectrosc. Relat. Phenom. 120, 149-154 (2001).
    45. 蕭茹雄, 以金屬有機氣相沉積法成長p-型氮化鎵薄膜及其金屬歐姆特性分析 (中原大學電子工程學系碩士學位論文, 2001).
    46. 羅丞曜, 銦鋅氧化膜基本特性及其與氮化鎵接觸應用之研究 (國立中央大學光電科學研究所碩士論文, 2001).
    47. S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, "HOLE COMPENSATION MECHANISM OF P-TYPE GAN FILMS," Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap. 31, 1258-1266 (1992).
    48. J. K. Sheu, Y. K. Su, G. C. Chi, P. L. Koh, M. J. Jou, C. M. Chang, C. C. Liu, and W. C. Hung, "High-transparency Ni/Au ohmic contact to p-type GaN," Appl. Phys. Lett. 74, 2340-2342 (1999).
    49. C. P. Chen, M. Y. Ke, C. C. Liu, Y. J. Chang, F. H. Yang, and J. J. Huang, "Observation of 394 nm electroluminescence from low-temperature sputtered n-ZnO/SiO2 thin films on top of the p-GaN heterostructure," Appl. Phys. Lett. 91, 091107 (2007).
    50. H. C. Hsu, G. M. Hsu, Y. S. Lai, Z. C. Feng, S. Y. Tseng, A. Lundskog, U. Forsberg, E. Janzen, K. H. Chen, and L. C. Chen, "Polarized and diameter-dependent Raman scattering from individual aluminum nitride nanowires: The antenna and cavity effects," Appl. Phys. Lett. 101, 121902 (2012).
    51. A. Khan, "Raman spectroscopic study of the ZnO nanostructures," Journal of The Pakistan Materials Society 4, 5 (2010).
    52. C. T. Chien, M. C. Wu, C. W. Chen, H. H. Yang, J. J. Wu, W. F. Su, C. S. Lin, and Y. F. Chen, "Polarization-dependent confocal Raman microscopy of an individual ZnO nanorod," Appl. Phys. Lett. 92, 223102 (2008).
    53. Q. Zhang, J. J. Qi, X. Li, F. Yi, Z. Z. Wang, and Y. Zhang, "Electrically pumped lasing from single ZnO micro/nanowire and poly(3,4-ethylenedioxythiophene):poly(styrenexulfonate) hybrid heterostructures," Appl. Phys. Lett. 101, 043119 (2012).
    54. U. Kaufmann, M. Kunzer, M. Maier, H. Obloh, A. Ramakrishnan, B. Santic, and P. Schlotter, "Nature of the 2.8 eV photoluminescence band in Mg doped GaN," Appl. Phys. Lett. 72, 1326-1328 (1998).
    55. Z. F. Shi, X. C. Xia, W. Yin, S. K. Zhang, H. Wang, J. Wang, L. Zhao, X. Dong, B. L. Zhang, and G. T. Du, "Dominant ultraviolet electroluminescence from p-ZnO:As/n-SiC(6H) heterojunction light-emitting diodes," Appl. Phys. Lett. 100, 101112 (2012).
    56. C. X. Xu, J. Dai, G. P. Zhu, G. Y. Zhu, Y. Lin, J. T. Li, and Z. L. Shi, "Whispering-gallery mode lasing in ZnO microcavities," Laser Photon. Rev. 8, 469-494 (2014).
    57. G. Y. Zhu, J. T. Li, P. L. Li, Z. S. Tian, J. Dai, Y. Y. Wang, Z. L. Shi, and C. X. Xu, "Different wavelength ranges' WGM lasing from a ZnO microrod/R6G: PMMA microcavity," Epl 110, 67007 (2015).
    58. H. Jeong, Y. H. Kim, T. H. Seo, H. S. Lee, J. S. Kim, E. K. Suh, and M. S. Jeong, "Enhancement of light output power in GaN-based light-emitting diodes using hydrothermally grown ZnO micro-walls," Opt. Express 20, 10597-10604 (2012).
    59. Y. J. Lee, Z. P. Yang, F. Y. Lo, J. J. Siao, Z. H. Xie, Y. L. Chuang, T. Y. Lin, and J. K. Sheu, "Slanted n-ZnO/p-GaN nanorod arrays light-emitting diodes grown by oblique-angle deposition," APL Mater. 2, 056101 (2014).
    60. H. Matsui, and H. Tabata, "In-plane anisotropy of polarized photoluminescence in M-plane (1010) ZnO and MgZnO/ZnO multiple quantum wells," Appl. Phys. Lett. 94, 161907 (2009).
    61. D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, G. Cantwell, and W. C. Harsch, "Valence-band ordering in ZnO," Phys. Rev. B 60, 2340-2344 (1999).
    62. C. F. Du, C. H. Lee, C. T. Cheng, K. H. Lin, J. K. Sheu, and H. C. Hsu, "Ultraviolet/blue light-emitting diodes based on single horizontal ZnO microrod/GaN heterojunction," Nanoscale Res. Lett. 9, 446 (2014).

    無法下載圖示 校內:2019-08-12公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE