簡易檢索 / 詳目顯示

研究生: 譚若希
Thummalapally Rohith Reddy
論文名稱: 感應鐵芯軟磁複合材料的磁性質多尺度模擬
Multiscale Simulation Study of the Magnetic Properties of Soft Magnetic Composites for Inductor Cores
指導教授: 許文東
Hsu, Wen-Dung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 101
中文關鍵詞: 鐵芯軟磁複合材料從頭計算法分散粒子模型蒙地卡羅模擬磁滯曲線梅特羅波利斯算法
外文關鍵詞: Iron cores, Soft magnetic composites, Ab initio calculations, Monte Carlo Simulation, Metropolis algorithm, Hysteresis loop, Dispersed particle model
相關次數: 點閱:72下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一個多世紀以來,鐵芯一直被用於電感器中,但鐵會導致高頻時的磁損耗增加。要減輕鐵芯相關問題的一個可行方法是使用軟磁材料,如鐵氧體或軟磁複合材料。其他材料,如軟磁複合材料(SMCs),在鐵基粉末上使用無機絕緣塗層,如Al2O3、TiO2和SiO2,來減少渦電流損失也是很好的選擇。在這個研究中,我們旨在利用模擬方法來研究SMC磁芯的磁特性。SMCs的偶極矩、磁各向異性能是由VASP,一個使用ab-initio的軟體來計算的。考慮到顆粒的大小和排列,在固體或黏性介質中構建了一個粒子分散的模型。透過ab-initio計算結果,每個粒子都被分配了一個磁矩和偶極,。SMC磁芯的磁滯環是通過Monte Carlo模擬(透過Metropolis演算法進行)。預測的磁滯環為我們提供了磁性質,如SMC磁芯的飽和磁化強度、殘留磁化量和矯頑磁場。所用的哈密頓方程主要考慮了磁偶極相互作用、外磁耦合和基於固體的矩陣內的磁各向異性能量。模擬結果將有助於開發磁性質更好的理想SMCs。

    Iron cores have been used in inductors for over a century, but the iron can result in increased magnetic losses at high frequencies. A feasible approach to mitigating the problems associated with iron cores is the use of soft magnetic materials, such as ferrites or soft magnetic composites. Other materials such as soft magnetic composites (SMCs) that use inorganic insulating coatings such as Al2O3, TiO2, and SiO2 on iron-based powders to reduce eddy current losses are also good alternatives. In this project, we aim to utilize simulation methods to study the magnetic properties of SMC cores. The dipole moment, magnetic anisotropic energy, and exchange energy of the SMCs were calculated by VASP, an ab-initio calculation software. A dispersed particle model was constructed in a solid or viscous medium, considering particle size and arrangements. Each particle is assigned a magnetic moment and dipole, obtained from ab-initio calculations. The hysteresis loop of the SMC cores was evaluated by Monte Carlo simulations with the Metropolis algorithm. The predicted hysteresis loop gives us magnetic properties such as saturation magnetization, remanent magnetization, and coercive field of the SMC cores. The Hamiltonian used primarily considers the magnetic dipole interactions, exchange coupling, and magnetic anisotropic energy within the solid-based matrix. The simulation results would help develop desired SMCs that offer better magnetic properties.

    摘要 i ABSTRACT ii ACKNOWLEDGEMENT iii Table of Contents iv List of Figures viii List of Tables xii Chapter 1 Introduction 1 1.1 Iron Core 1 1.1.1 Challenges with iron core 1 1.1.1.1 Hysteresis loss 1 1.1.1.2 Eddy current loss 2 1.1.1.3 Residual loss 3 1.1.2 Efforts to address above problems 4 1.2 Introduction of Soft Magnetic Materials 5 1.2.1 Ferrites 5 1.2.2 Soft magnetic composites (SMCs) 5 1.2.2.1 Properties & advantages of SMCs 6 1.2.2.2 Limitations of SMCs 7 1.2.2.3 Applications of SMCs 7 1.3 Our Aim 7 Chapter 2 Literature Survey 8 2.1 Background of Soft Magnetic Composites (SMCs) 8 2.2 Magnetism 10 2.2.1 Types of magnetic material 10 2.2.2 Magnetisation 11 2.2.3 Magnetic Moment 12 2.2.4 Magnetic Induction 13 2.2.5 Magnetic Permeability 13 2.2.6 Magnetic Susceptibility 14 2.2.7 Hysteresis Curve 14 2.2.8 Magnetic Anisotropy 16 2.2.8.1 Magneto-crystalline anisotropy 17 Chapter 3 Theoretical Background 18 3.1 First Principles Calculations 18 3.2 Density Functional Theory (DFT) 18 3.3 Spin Density Functional Theory 19 3.3.1 The many-body Hamiltonian 19 3.3.2 The Kohn-Sham equation 20 3.3.3 Non-collinear magnetism 21 3.3.4 Collinear magnetism 23 3.3.5 Exchange-correlation functionals 23 3.3.6 Pseudopotentials and project augmented wave (PAW) methods 25 3.3.7 Periodic Boundary Condition (PBC) 25 3.3.8 Density of States (DOS) 26 3.4 Monte Carlo Simulation 27 3.4.1 Markov Process 27 3.4.2 Metropolis Algorithm 28 3.5 Computational & Visualization Tools 29 3.5.1 Vienna Ab initio Simulation Package (VASP) 29 3.5.2 Materials Studio 30 3.5.3 VESTA 30 3.5.4 MATLAB 31 Chapter 4 Physical Modelling and Simulation Design 32 4.1 Methodology 32 4.1.1 Simulation of dispersed magnetic particle and core shell materials 32 4.2 Core-Shell Materials 32 4.2.1 Core material 32 4.2.2 Shell materials 33 4.3 Structural Optimization of Fe Bulk 33 4.4 Construction and Structural Optimization of Slab Model of Fe 33 4.5 Construction and Structural Optimization of Amorphous SiO2, TiO2 and Al2O3 Slabs 34 4.5.1 Amorphous SiO2 Slabs 35 4.5.2 Amorphous TiO2 Slabs 38 4.5.3 Amorphous Al2O3 Slabs 41 4.5.4 Density of States (DOS) of crystalline and amorphous models 45 4.6 Construction and Structural Optimization of Interface Models of Fe(110) and Amorphous SiO2 Slabs 47 4.7 Construction and Structural Optimization of Interface Models of Fe(110) and Amorphous TiO2 Slabs 49 4.8 Construction and Structural Optimization of Interface Models of Fe(110) and Amorphous Al2O3 Slabs 51 4.9 Magnetic Moment Calculation 53 4.10 Magnetic Anisotropy Energy Calculation 54 4.11 Ferromagnetic and Anti-ferromagnetic Energies Calculation 55 4.12 Building of Dispersed Particle Thin Film Model 55 4.13 Monte Carlo Simulations with the Metropolis Algorithm for Magnetic Hysteresis Curve 56 4.13.1 Flowchart of the process 58 4.13.2 Hamiltonian of the dispersed particle model 59 Chapter 5 Results and Discussion 61 5.1 Interfacial Energy of the Interface Models 61 5.2 Magnetic Moments of Bulk Fe and Interface Models 63 5.3 Magnetic Moment Distribution of Fe in the Interface Models 65 5.4 Magnetic Anisotropy Energy(MAE) of Bulk Fe and Interface Models 69 5.4.1 MAE of Bulk Fe 69 5.4.2 MAE of Fe(110)/SiO2 interface models 69 5.4.3 MAE of Fe(110)/TiO2 interface models 71 5.4.4 MAE of Fe(110)/Al2O3 interface models 72 5.5 Ferromagnetic and Anti-ferromagnetic Energies of Bulk Fe and Interface Models 75 5.6 Exchange Energy of Bulk Fe and Interface Models 77 5.7 Density of States of the Bulk Fe and Interface Models 79 5.8 Hysteresis Curves of the Dispersed Particle Thin Film Models 84 Chapter 6 Conclusion 93 Chapter 7 References 96

    [1] D. Hendricks, C R; Amarakoon, V W.R. ; Sullivan, “Processing of manganese zinc ferrites for high-frequency switch-mode power supplies,” Am. Ceram. Soc. Bull. (United States), vol. 70:5, 1991.
    [2] H. Hojo, T. Kamijo, Y. Taniguchi, N. Akagi, and H. Mitani, “Dust core with low core-loss for high-frequency applications,” R D Res. Dev. Kobe Steel Eng. Reports, vol. 66, no. 1, 2016.
    [3] H. Shokrollahi and K. Janghorban, “Soft magnetic composite materials (SMCs),” 2007.
    [4] A. Inoue and F. Kong, Soft Magnetic Materials, no. November. 2021.
    [5] J. Calvo-de la Rosa, J. Tejada, and A. Lousa, “Structural and impedance spectroscopy characterization of Soft Magnetic Materials,” J. Magn. Magn. Mater., vol. 475, pp. 570–578, Apr. 2019, doi: 10.1016/J.JMMM.2018.11.085.
    [6] L. Pennander and A. G. Jack, “Soft Magnetic Iron Powder Materials AC Properties and their Application in Electrical Machines,” Euro Pm2003, 2003.
    [7] T. Maeda et al., “Development of super low iron-loss P/M soft magnetic material,” SEI Technical Review, no. 60. 2005.
    [8] V. Iancu, T. Canta, D. C. Popa, and L. Szabó, “Soft Magnetic Composites Used for the Iron Core of the Electrical Machines,” no. January, pp. 3–6, 2014.
    [9] B. Zhang, Soft Magnetic Composites in Novel Designs of Electrical Traction Machines. 2016.
    [10] P. Skoglund, “High density PM parts by high velocity compaction,” Powder Metall., vol. 44, no. 3, 2001.
    [11] F. Magnussen and D. Svechkarenko, “Analysis of a PM machine with concentrated fractional pitch windings,” Proc. …, vol. 14, no. 5, 2004.
    [12] A. G. Jack, B. C. Mecrow, and P. G. Dickinson, “Iron loss in machines with powdered iron stators,” 1999, doi: 10.1109/IEMDC.1999.769023.
    [13] E. Enescu, P. Lungu, S. Marjnescu, and P. Dragoi, “The effect of processing conditions on magnetic and electric properties of composite materials used in nonconventional magnetic circuits,” in Journal of Optoelectronics and Advanced Materials, 2006, vol. 8, no. 2.
    [14] J. J. Zhong, Y. G. Guo, J. G. Zhu, and Z. W. Lin, “Characteristics of soft magnetic composite material under rotating magnetic fluxes,” J. Magn. Magn. Mater., vol. 299, no. 1, 2006, doi: 10.1016/j.jmmm.2005.03.016.
    [15] Y. G. Guo, J. G. Zhu, and J. J. Zhong, “Measurement and modelling of magnetic properties of soft magnetic composite material under 2D vector magnetisations,” J. Magn. Magn. Mater., vol. 302, no. 1, 2006, doi: 10.1016/j.jmmm.2005.08.023.
    [16] Y. G. Guo, J. G. Zhu, Z. W. Lin, and J. J. Zhong, “3D vector magnetic properties of soft magnetic composite material,” J. Magn. Magn. Mater., vol. 302, no. 2, 2006, doi: 10.1016/j.jmmm.2005.10.019.
    [17] M. De Wulf, L. Anestiev, L. Dupré, L. Froyen, and J. Melkebeek, “Magnetic properties and loss separation in iron powder soft magnetic composite materials,” J. Appl. Phys., vol. 91, no. 10 I, 2002, doi: 10.1063/1.1446115.
    [18] L. Frayman, S. Quinn, R. Quinn, D. Green, and F. Hanejko, “Advanced soft magnetic composite materials for AC applications with reduced iron losses,” Powder Metall., vol. 58, no. 5, pp. 335–338, Oct. 2015, doi: 10.1080/00325899.2015.1133080.
    [19] K. J. Sunday, “Development of Ferrite-coated Soft Magnetic Composites.” Drexel University, 2017.
    [20] B. Dyer, “Development of Iron-Based Soft Magnetic Composites with Novel Coating Materials.” University of Cambridge, 2022.
    [21] K. J. Sunday and M. L. Taheri, “Soft magnetic composites: recent advancements in the technology,” Met. Powder Rep., vol. 72, no. 6, pp. 425–429, 2017.
    [22] T. A. Laxminarayana, S. K. Manna, B. G. Fernandes, and N. Venkataramani, “Study of AC magnetic properties and core losses of Fe/Fe3O4-epoxy resin soft magnetic composite,” Phys. Procedia, vol. 75, pp. 1396–1403, 2015.
    [23] Cogent-Power-Ltd, “Electrical Steel Thin Non Oriented,” 2004, [Online]. Available: http://perso.uclouvain.be/ernest.matagne/ELEC2311/T2007/ThinNOFP.pdf.
    [24] X. Wu et al., “Effect of Phosphating and Heat Treatment on Magnetic Properties of Fe-3.3Si-6.5Cr Soft Magnetic Composites,” J. Supercond. Nov. Magn., vol. 33, no. 6, pp. 1889–1897, 2020, doi: 10.1007/s10948-020-05440-2.
    [25] L. F. Fan, H. I. Hsiang, and J. J. Hung, “Silane surface modification effects on the electromagnetic properties of phosphatized iron-based SMCs,” Appl. Surf. Sci., vol. 433, pp. 133–138, Mar. 2018, doi: 10.1016/J.APSUSC.2017.10.022.
    [26] H. I. Hsiang, L. F. Fan, and J. J. Hung, “Phosphoric acid addition effect on the microstructure and magnetic properties of iron-based soft magnetic composites,” J. Magn. Magn. Mater., vol. 447, pp. 1–8, Feb. 2018, doi: 10.1016/J.JMMM.2017.08.096.
    [27] Z. Chen et al., “Phosphate coatings evolution study and effects of ultrasonic on soft magnetic properties of FeSiAl by aqueous phosphoric acid solution passivation,” J. Alloys Compd., vol. 783, pp. 434–440, Apr. 2019, doi: 10.1016/J.JALLCOM.2018.12.328.
    [28] M. Yaghtin, A. H. Taghvaei, B. Hashemi, and K. Janghorban, “Effect of heat treatment on magnetic properties of iron-based soft magnetic composites with Al2O3 insulation coating produced by sol–gel method,” J. Alloys Compd., vol. 581, pp. 293–297, Dec. 2013, doi: 10.1016/J.JALLCOM.2013.07.008.
    [29] X. Yi, Y. Peng, Z. Yao, C. Xia, and S. Zhu, “Microstructure and magnetic properties of FeSiAl soft magnetic composites prepared by chemical in-situ coprecipitation with NaOH,” Mater. Chem. Phys., vol. 267, p. 124626, Jul. 2021, doi: 10.1016/J.MATCHEMPHYS.2021.124626.
    [30] D. Liu, C. Wu, and M. Yan, “Investigation on sol–gel Al2O3 and hybrid phosphate-alumina insulation coatings for FeSiAl soft magnetic composites,” J. Mater. Sci., vol. 50, no. 20, pp. 6559–6566, 2015, doi: 10.1007/s10853-015-9189-4.
    [31] W. Li et al., “High permeability and low loss bioinspired soft magnetic composites with nacre-like structure for high frequency applications,” Acta Mater., vol. 167, pp. 267–274, Apr. 2019, doi: 10.1016/J.ACTAMAT.2019.01.035.
    [32] B. Zhou et al., “Fe-based amorphous soft magnetic composites with SiO2 insulation coatings: A study on coatings thickness, microstructure and magnetic properties,” Ceram. Int., vol. 46, no. 9, pp. 13449–13459, Jun. 2020, doi: 10.1016/J.CERAMINT.2020.02.128.
    [33] X. A. Fan, Z. Y. Wu, G. Q. Li, J. Wang, Z. D. Xiang, and Z. H. Gan, “High resistivity and low core loss of intergranular insulated Fe–6.5 wt.%Si/SiO2 composite compacts,” Mater. Des., vol. 89, pp. 1251–1258, Jan. 2016, doi: 10.1016/J.MATDES.2015.10.087.
    [34] J. M. D. Coey, “Magnetism and Magnetic Materials. Cambridge University Press, Cambridge,” Search Google Sch. Export Cit., 2009.
    [35] S. Chikazumi and C. D. Graham, Physics of ferromagnetism, no. 94. Oxford university press, 1997.
    [36] R. M. Bozorth, Ferromagnetism. 1993.
    [37] H. Song, “Soft magnetic composites for high frequency applications,” 2015.
    [38] H. Skarrie, Design of powder core inductors. Univ., 2001.
    [39] N. A. Spaldin, Magnetic materials: fundamentals and applications. Cambridge university press, 2010.
    [40] M. Anhalt, “Systematic investigation of particle size dependence of magnetic properties in soft magnetic composites,” J. Magn. Magn. Mater., vol. 320, no. 14, pp. e366–e369, Jul. 2008, doi: 10.1016/J.JMMM.2008.02.072.
    [41] B. D. Cullity and C. D. Graham, Introduction to magnetic materials. John Wiley & Sons, 2011.
    [42] Muljadi, P. Sardjono, and Suprapedi, “Preparation and characterization of 5 wt.% epoxy resin bonded magnet NdFeB for micro generator application,” in Energy Procedia, 2015, vol. 68, doi: 10.1016/j.egypro.2015.03.257.
    [43] Ü. Özgür, Y. Alivov, and H. Morkoç, “Microwave ferrites, part 1: fundamental properties,” J. Mater. Sci. Mater. Electron., vol. 20, pp. 789–834, 2009.
    [44] S. Bedanta and W. Kleemann, “Supermagnetism,” J. Phys. D. Appl. Phys., vol. 42, no. 1, p. 13001, 2008.
    [45] R. S. de Biasi and T. C. Devezas, “Anisotropy field of small magnetic particles as measured by resonance,” J. Appl. Phys., vol. 49, no. 4, pp. 2466–2469, 1978.
    [46] G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B, vol. 54, no. 16, p. 11169, 1996.
    [47] L. H. Thomas, “Pmt. Cambridge Philos. Sot., 23 (1926) 542. E. Fermi,” Z. Phys, vol. 48, p. 73, 1928.
    [48] L. H. Thomas, “The calculation of atomic fields,” in Mathematical proceedings of the Cambridge philosophical society, 1927, vol. 23, no. 5, pp. 542–548.
    [49] E. Ruiz, D. R. Salahub, and A. Vela, “Density Functional Theory. An approach to the Quantum Many-Body Problem,” J. K. Angew. Chem.. lnt. Ed. Engl, vol. 117, no. 2, 1995.
    [50] M. Chen et al., “Introducing PROFESS 3.0: An advanced program for orbital-free density functional theory molecular dynamics simulations,” Comput. Phys. Commun., vol. 190, 2015, doi: 10.1016/j.cpc.2014.12.021.
    [51] W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Phys. Rev., vol. 140, no. 4A, p. A1133, 1965.
    [52] J. P. Perdew, E. R. McMullen, and A. Zunger, “Density-functional theory of the correlation energy in atoms and ions: a simple analytic model and a challenge,” Phys. Rev. A, vol. 23, no. 6, p. 2785, 1981.
    [53] D. M. Ceperley and B. J. Alder, “Ground state of the electron gas by a stochastic method,” Phys. Rev. Lett., vol. 45, no. 7, p. 566, 1980.
    [54] P. Kurz, F. Förster, L. Nordström, G. Bihlmayer, and S. Blügel, “Ab initio treatment of noncollinear magnets with the full-potential linearized augmented plane wave method,” Phys. Rev. B, vol. 69, no. 2, p. 24415, 2004.
    [55] J. P. Perdew and Y. Wang, “Erratum: Accurate and simple analytic representation of the electron-gas correlation energy [Phys. Rev. B 45, 13244 (1992)],” Phys. Rev. B, vol. 98, no. 7, p. 79904, 2018.
    [56] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett., vol. 77, no. 18, p. 3865, 1996.
    [57] P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B, vol. 50, no. 24, p. 17953, 1994.
    [58] R. S. Katiyar and P. K. Jha, “Molecular simulations in drug delivery: Opportunities and challenges,” Wiley Interdiscip. Rev. Comput. Mol. Sci., vol. 8, no. 4, p. e1358, 2018.
    [59] G. Makov and M. C. Payne, “Periodic boundary conditions in ab initio calculations,” Phys. Rev. B, vol. 51, no. 7, p. 4014, 1995.
    [60] M. E. J. Newman and G. T. Barkema, “Monte Carlo Methods in Statistical Physics: Chapters 1-4,” Monte Carlo Methods Stat. Phys., 1999.
    [61] G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci., vol. 6, no. 1, pp. 15–50, 1996.
    [62] Z.-K. Liu, “First-principles calculations and CALPHAD modeling of thermodynamics,” J. phase equilibria Diffus., vol. 30, pp. 517–534, 2009.
    [63] H. G. A. Burton, C. Marut, T. J. Daas, P. Gori-Giorgi, and P.-F. Loos, “Variations of the Hartree–Fock fractional-spin error for one electron,” J. Chem. Phys., vol. 155, no. 5, p. 54107, 2021.
    [64] I. G. Kaplan, The Pauli exclusion principle: origin, verifications, and applications. John Wiley & Sons, 2017.
    [65] P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev., vol. 136, no. 3B, p. B864, 1964.
    [66] G. Henkelman, B. P. Uberuaga, and H. Jónsson, “A climbing image nudged elastic band method for finding saddle points and minimum energy paths,” J. Chem. Phys., vol. 113, no. 22, pp. 9901–9904, 2000.
    [67] G. Henkelman and H. Jónsson, “Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points,” J. Chem. Phys., vol. 113, no. 22, pp. 9978–9985, 2000.
    [68] J. Hafner, “Ab‐initio simulations of materials using VASP: Density‐functional theory and beyond,” J. Comput. Chem., vol. 29, no. 13, pp. 2044–2078, 2008.
    [69] K. Momma and F. Izumi, “VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data,” J. Appl. Crystallogr., vol. 44, no. 6, pp. 1272–1276, 2011.
    [70] R. F. Neumann et al., “Morphology and magnetism of multifunctional nanostructured γ-Fe2O3 films: Simulation and experiments,” J. Magn. Magn. Mater., vol. 347, pp. 26–32, 2013.
    [71] G. Margaris, K. N. Trohidou, V. Iannotti, G. Ausanio, L. Lanotte, and D. Fiorani, “Magnetic behavior of dense nanoparticle assemblies: Interplay of interparticle interactions and particle system morphology,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 86, no. 21, 2012, doi: 10.1103/PhysRevB.86.214425.
    [72] “Constitution and magnetism of iron and its alloys,” Choice Rev. Online, vol. 39, no. 08, 2002, doi: 10.5860/choice.39-4592.
    [73] M. J. S. Spencer, A. Hung, I. K. Snook, and I. Yarovsky, “Density functional theory study of the relaxation and energy of iron surfaces,” Surf. Sci., vol. 513, no. 2, 2002, doi: 10.1016/S0039-6028(02)01809-5.
    [74] Munasir et al., “Phase Transition of SiO2 Nanoparticles Prepared from Natural Sand: The Calcination Temperature Effect,” in Journal of Physics: Conference Series, 2018, vol. 1093, no. 1, doi: 10.1088/1742-6596/1093/1/012025.
    [75] A. S. Bakri et al., “Effect of annealing temperature of titanium dioxide thin films on structural and electrical properties,” in AIP Conference Proceedings, 2017, vol. 1788, doi: 10.1063/1.4968283.
    [76] N. M. Stuart and K. Sohlberg, “The microstructure of γ-alumina,” Energies, vol. 14, no. 20, p. 6472, 2021.
    [77] J. A. C. Bland, C. Daboo, B. Heinrich, Z. Celinski, and R. D. Bateson, “Enhanced magnetic moments in bcc Fe films,” Phys. Rev. B, vol. 51, no. 1, p. 258, 1995.
    [78] Y. C. Han, Y. H. Kim, J. K. Heo, Y. C. Kang, and Y. S. Kang, “A magnetic behavior of a-Fe nanoparticle,” 2006 IEEE Nanotechnol. Mater. Devices Conf. NMDC, vol. 1, pp. 650–652, 2006, doi: 10.1109/NMDC.2006.4388946.
    [79] A. Matsumoto, T. Sugiura, M. Kobashi, and S. Yamamoto, “Preparation and magnetic properties of nano-sized iron powder particles coated with silica film by calcium hydride reduction method,” Mater. Trans., vol. 61, no. 7, 2020, doi: 10.2320/matertrans.Y-M2020816.

    無法下載圖示 校內:2028-08-14公開
    校外:2028-08-14公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE