| 研究生: |
瑞可 Azril |
|---|---|
| 論文名稱: |
組織學切片製備方法的評估: 以椎間盤檢體為例 A Methodology to Evaluate Different Histological Preparations of Soft Tissues: Intervertebral Disc Tissues Study |
| 指導教授: |
鄭友仁
Jeng, Yeau-Ren |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 椎間盤 、組織樣品製備 、生物力學 、拉曼光譜 |
| 外文關鍵詞: | intervertebral disc, tissue preparation, biomechanics, Raman spectroscopy |
| 相關次數: | 點閱:99 下載:13 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
組織學標本對於研究生物組織的微觀解剖和辨別組織中的疾病(組織病理學)至關重要。組織病理學常用的組織學製備方法有冷凍切片、固定和石蠟包埋三種。組織製備方法將不可避免地改變組織標本的內容。因此,探討製備方法對組織內容的影響勢在必行。
本論文旨在評估不同的標本製備方法將如何影響標本的組織形態、生物力學特性和化學成分。此研究使用椎間盤 (IVD) 組織,研究結果對其他軟組織也有重要參考價值。此研究採用奈米壓痕結合拉曼光譜來研究生物力學特性和化學成分。這些特性通過以下組織學標本製備方法進行探討:新鮮冷凍切片(對照組);固定冷凍切片,石蠟包埋。
結果表明,用光學顯微鏡可以清晰分辨椎間盤組織中的髓核(NP)和纖維環(AF)。石蠟包埋的樣品顯示了最清晰的細節,尤其可以識別纖維環的薄片結構。組織形態的差異顯示組織製備影響樣品的微觀結構,同時還顯示組織製備影響組織的化學成分。樣品製備過程主要改變蛋白質並減少組織中的一些有機物含量,其中石蠟包埋的樣品比其他的樣品具有更顯著的變化。在生物力學性能方面,新鮮和固定樣品的冷凍切片之間沒有顯著差異(p>0.05);相比之下,新鮮冷凍切片和石蠟包埋樣品顯示出明顯差異 (p<0.05)。總之,與石蠟包埋樣品相比,新鮮冷凍切片和固定冷凍切片樣品更適合用於組織學樣品中的生物力學評估。這項研究也提供研究組織樣品的機械性能和化學成分的重要參考,特別是對於椎間盤組織。
A histological specimen is essential to study the microscopic anatomy of biological tissues and identify disease in the tissues (histopathology). There are three types of histological preparation commonly used for histopathology including cryosection, fixation, and paraffin-embedded. A tissue preparation method will inevitably alter the tissue content. Therefore, it is imperative to investigate the impact of the preparation method on the tissue content.
This thesis aims to evaluate how different sample preparation methods will affect the tissue morphology, biomechanical properties, and chemical composition of samples. The study focused on the intervertebral disc (IVD) tissue and can be the further implication for other soft tissues. The study employed nanoindentation in conjunction with Raman spectroscopy to investigate the chemical composition and biomechanical properties. These properties were examined through the following histological specimen types: fresh cryosection (control); fixed cryosection, and paraffin-embedded.
The result showed that The IVD tissue could be localized using the optical microscope and the nucleus pulposus (NP) and annulus fibrosus (AF) can be seen. Paraffin-embedded samples showed the clearest details where the lamellae structure of AF could be identified. The difference in tissue morphology indicated the tissue preparations affect the microstructure of the samples. It was also found that the tissue preparations affected the chemical content of the tissues. Sample preparation was proved to alter mostly the protein and reduce some organic content of the tissues. Paraffin-embedded was found to have more significant changes among the other preparation. In terms of biomechanical properties, there was no significant difference between the cryosection of the fresh and fixed sample (p>0.05). In contrast, the fresh cryosection and paraffin-embedded samples showed a significant difference (p<0.05). In conclusion, fresh cryosection and fixed cryosection samples are more promising to work with for biomechanical assessment in histological tissue due to less manipulation compared to the paraffin-embedded sample. Moreover, the findings provided in this work address an essential gap in the literature by providing valuable insight into the mechanical characteristics of IVD at the nanoscale. This study also can become a reference for a better approach to check the mechanical properties and chemical content of tissues, especially for IVD tissues.
[1] B. I.Martin et al., “Expenditures and health status among adults with back and neck problems,” JAMA - J. Am. Med. Assoc., vol. 299, no. 6, pp. 656–664, 2008, doi: 10.1001/jama.299.6.656.
[2] N.Kos, L.Gradisnik, andT.Velnar, “A Brief Review of the Degenerative Intervertebral Disc Disease,” Med. Arch. (Sarajevo, Bosnia Herzegovina), vol. 73, no. 6, pp. 421–424, 2019, doi: 10.5455/medarh.2019.73.421-424.
[3] G.Cs-Szabo, D.Ragasa-San Juan, V.Turumella, K.Masuda, E. J. M. A.Thonar, andH. S.An, “Changes in mrna and protein levels of proteoglycans of the anulus fibrosus and nucleus pulposus during intervertebral disc degeneration,” Spine (Phila. Pa. 1976)., vol. 27, no. 20, pp. 2212–2219, 2002, doi: 10.1097/00007632-200210150-00006.
[4] V. M.Ravindra et al., “Degenerative Lumbar Spine Disease: Estimating Global Incidence and Worldwide Volume,” Glob. Spine J., vol. 8, no. 8, pp. 784–794, 2018, doi: 10.1177/2192568218770769.
[5] E.Mick et al., “Influence of short-term fixation with mixed formalin or ethanol solution on the mechanical properties of human cortical bone,” Curr. Dir. Biomed. Eng., vol. 1, no. 1, pp. 335–339, 2015, doi: 10.1515/cdbme-2015-0083.
[6] C. I. C.Tan, S.Dunn, G. N.Kent, A. G.Randall, S. J.Edmondston, andK. P.Singer, “Does formalin-fixation alter the extent of collagen and elastin crosslinks in human spinal intervertebral discs and ligamentum flava?,” J. Musculoskelet. Res., vol. 6, no. 2, pp. 89–99, 2002, doi: 10.1142/S0218957702000691.
[7] F.Lyng, E.Gazi, andP.Gardner, “Preparation of tissues and cells for infrared and Raman spectroscopy and imaging,” RSC Anal. Spectrosc. Ser., no. January, pp. 147–191, 2011.
[8] B.Akhtar, R.; Schwarzer, N. ;Sherratt, M.J. ; Watson, R.E.B. ; Graham, H.K. ;Trafford, A.W. ; Mummery, P.M. ;Derby, “Nanoindentation of histological specimens,” J. Mater., vol. 24, no. 3, pp. 638–646, 2010, doi: 10.1557/JMR.2009.0130.Nanoindentation.
[9] T.Kubíková et al., “Histological composition and mechanical properties of cryopreserved samples of aortic and pulmonary valves,” Solid State Phenom., vol. 258 SSP, pp. 341–344, 2017, doi: 10.4028/www.scientific.net/SSP.258.341.
[10] Y.Shen, T.Schmidt, andA.Diz-Muñoz, “Protocol on Tissue Preparation and Measurement of Tumor Stiffness in Primary and Metastatic Colorectal Cancer Samples with an Atomic Force Microscope,” STAR Protoc., vol. 1, no. 3, 2020, doi: 10.1016/j.xpro.2020.100167.
[11] J.Xu, J. Y.Rho, S. R.Mishra, andZ.Fan, “Atomic force microscopy and nanoindentation characterization of human lamellar bone prepared by microtome sectioning and mechanical polishing technique,” J. Biomed. Mater. Res. - Part A, vol. 67, no. 3, pp. 719–726, 2003, doi: 10.1002/jbm.a.10109.
[12] K.Park, G. E.Lonsberry, M.Gearing, A. I.Levey, andJ. P.Desai, “Viscoelastic Properties of Human Autopsy Brain Tissues as Biomarkers for Alzheimer’s Diseases,” IEEE Trans. Biomed. Eng., vol. 66, no. 6, pp. 1705–1713, 2019, doi: 10.1109/TBME.2018.2878555.
[13] D. M.Ebenstein, D.Coughlin, J.Chapman, C.Li, andL. A.Pruitt, “Nanomechanical properties of calcification, fibrous tissue, and hematoma from atherosclerotic plaques,” J. Biomed. Mater. Res. - Part A, vol. 91, no. 4, pp. 1028–1037, 2009, doi: 10.1002/jbm.a.32321.
[14] J.Burket, S.Gourion-Arsiquaud, L. M.Havill, S. P.Baker, A. L.Boskey, andM. C. H.van derMeulen, “Microstructure and nanomechanical properties in osteons relate to tissue and animal age,” J. Biomech., vol. 44, no. 2, pp. 277–284, 2011, doi: 10.1016/j.jbiomech.2010.10.018.
[15] F.Ehlicke, N.Köster, D.Salzig, andP.Czermak, “Non-invasive Raman Spectroscopy and Quantitative Real-Time PCR Distinguish Among Undifferentiated Human Mesenchymal Stem Cells and Redifferentiated Nucleus Pulposus Cells and Chondrocytes In Vitro,” Open Biomed. Eng. J., vol. 11, no. 1, pp. 72–84, 2017, doi: 10.2174/1874120701711010072.
[16] X.Wang et al., “Identifying compositional and structural changes in the nucleus pulposus from patients with lumbar disc herniation using Raman spectroscopy,” Exp. Ther. Med., vol. 20, no. 1, pp. 447–453, 2020, doi: 10.3892/etm.2020.8729.
[17] M.Beyhaghi, M.Rouhani, J.Hobley, andY.-R.Jeng, “In-situ and ex-situ comparison of oxidation of Inconel 718 manufactured by selective laser melting and conventional methods up to 650°C,” Appl. Surf. Sci., p. 151037, 2021, doi: 10.1016/j.apsusc.2021.151037.
[18] R.P. Prithvi, “Intervertebral disc: Anatomy-physiology-pathophysiology-treatment,” Pain Pract., vol. 8, no. 1, pp. 18–44, 2008.
[19] H. L.Guerin andD. M.Elliott, “Quantifying the Contributions of Structure to Annulus Fibrosus Mechanical Function Using a Nonlinear, Anisotropic, Hyperelastic Model,” J. Orthop. Res. Sept., vol. 25, no. June, pp. 508–516, 2007, doi: 10.1002/jor.
[20] L. J.Smith andN. L.Fazzalari, “The elastic fibre network of the human lumbar anulus fibrosus: Architecture, mechanical function and potential role in the progression of intervertebral disc degeneration,” Eur. Spine J., vol. 18, no. 4, pp. 439–448, 2009, doi: 10.1007/s00586-009-0918-8.
[21] M. I.Bonetti, “Microfibrils: a cornerstone of extracellular matrix and a key to understand Marfan syndrome,” Ital. J. Anat. Embryol., vol. 114, no. 4, pp. 201–224, 2010.
[22] J. C.Iatridis, L. A.Setton, M.Weidenbaum, andV. C.Mow, “Alterations in the mechanical behavior of the human lumbar nucleus pulposus with degeneration and aging,” J. Orthop. Res., vol. 15, no. 2, pp. 318–322, 1997, doi: 10.1002/jor.1100150224.
[23] H.Muir, “The chondrocyte, architect of cartilage. Biomechanics, structure, function and molecular biology of cartilage matrix macromolecules,” BioEssays, vol. 17, no. 12, pp. 1039–1048, 1995, doi: 10.1002/bies.950171208.
[24] F.Mwale et al., “Distinction between the extracellular matrix of the nucleus pulposus and hyaline cartilage: A requisite for tissue engineering of intervertebral disc,” Eur. Cells Mater., vol. 8, pp. 58–64, 2004, doi: 10.22203/eCM.v008a06.
[25] R. J.Moore, “The vertebral endplate: Disc degeneration, disc regeneration,” Eur. Spine J., vol. 15, no. SUPPL. 3, pp. 333–337, 2006, doi: 10.1007/s00586-006-0170-4.
[26] J. C.Lotz, A. J.Fields, andE. C.Liebenberg, “The Role of the Vertebral End Plate in Low Back Pain,” Glob. Spine J., vol. 3, no. 3, pp. 153–163, 2013, doi: 10.1055/s-0033-1347298.
[27] A.Nachemson, T.Lewin, A.Maroudas, andM. A. R.Freeman, “In vitro diffusion of DYE through the end-plates and the annulus fibrosus of human lumbar inter-vertebral discs,” Acta Orthop., vol. 41, no. 6, pp. 589–607, 1970, doi: 10.3109/17453677008991550.
[28] S.Holm, A. K.Holm, L.Ekström, A.Karladani, andT.Hansson, “Experimental Disc Degeneration Due to Endplate Injury,” J. Spinal Disord. Tech., vol. 17, no. 1, pp. 64–71, 2004, doi: 10.1097/00024720-200402000-00012.
[29] J.Antoniou et al., “The human lumbar endplate: Evidence of changes in biosynthesis and denaturation of the extracellular matrix with growth, maturation, aging, and degeneration,” Spine (Phila. Pa. 1976)., vol. 21, no. 10, pp. 1153–1161, 1996, doi: 10.1097/00007632-199605150-00006.
[30] B.Johnstone andM. T.Bayliss, “The large proteoglycans of the human intervertebral disc: Changes in their biosynthesis and structure with age5 topography5 and pathology,” Spine (Phila. Pa. 1976)., vol. 20, no. 6, pp. 674–684, 1995, doi: 10.1097/00007632-199503150-00008.
[31] R. I.Inkinen, M. J.Lammi, S.Lehmonen, K.Puustjärvi, E.Kääpä, andM. I.Tammi, “Relative increase of biglycan and decorin and altered chondroitin sulfate epitopes in the degenerating human intervertebral disc,” J. Rheumatol., vol. 25, no. 3, pp. 506–514, 1998.
[32] P.Suthar, R.Patel, C.Mehta, andN.Patel, “MRI evaluation of lumbar disc degenerative disease,” J. Clin. Diagnostic Res., vol. 9, no. 4, pp. TC04–TC09, 2015, doi: 10.7860/JCDR/2015/11927.5761.
[33] C. W. A.Pfirrmann, A.Metzdorf, M.Zanetti, J.Hodler, andN.Boos, “Magnetic resonance classification of lumbar intervertebral disc degeneration,” Spine (Phila. Pa. 1976)., vol. 26, no. 17, pp. 1873–1878, 2001, doi: 10.1097/00007632-200109010-00011.
[34] J.Sahlman et al., “Premature vertebral endplate ossification and mild disc degeneration in mice after inactivation of one allele belonging to the Col2a1 gene for type II collagen,” Spine (Phila. Pa. 1976)., vol. 26, no. 23, pp. 2558–2565, 2001, doi: 10.1097/00007632-200112010-00008.
[35] J. H.Jeong, J. H.Lee, E. S.Jin, J. K.Min, S. R.Jeon, andK. H.Choi, “Regeneration of intervertebral discs in a rat disc degeneration model by implanted adipose-tissue-derived stromal cells,” Acta Neurochir. (Wien)., vol. 152, no. 10, pp. 1771–1777, 2010, doi: 10.1007/s00701-010-0698-2.
[36] K.Masuda et al., “A novel rabbit model of mild, reproducible disc degeneration by an anulus needle puncture: Correlation between the degree of disc injury and radiological and histological appearances of disc degeneration,” Spine (Phila. Pa. 1976)., vol. 30, no. 1, pp. 5–14, 2005, doi: 10.1097/01.brs.0000148152.04401.20.
[37] N.Bergknut et al., “The dog as an animal model for intervertebral disc degeneration?,” Spine (Phila. Pa. 1976)., vol. 37, no. 5, pp. 351–358, 2012, doi: 10.1097/BRS.0b013e31821e5665.
[38] Y.Zhang, S.Drapeau, H. S.An, D.Markova, B. A.Lenart, andD. G.Anderson, “Histological features of the degenerating intervertebral disc in a goat disc-injury model,” Spine (Phila. Pa. 1976)., vol. 36, no. 19, pp. 1519–1527, 2011, doi: 10.1097/BRS.0b013e3181f60b39.
[39] D.Oehme et al., “Mesenchymal progenitor cells combined with pentosan polysulfate mediating disc regeneration at the time of microdiscectomy: A preliminary study in an ovine model: Laboratory investigation,” J. Neurosurg. Spine, vol. 20, no. 6, pp. 657–669, 2014, doi: 10.3171/2014.2.SPINE13760.
[40] W. C.Lauerman, R. C.Platenberg, J. E.Cain, andV. F. X.Deeney, “Age-related disk degeneration: Preliminary report of a naturally occurring baboon model,” Journal of Spinal Disorders, vol. 5, no. 2. Journal of Spinal Disorders, pp. 170–174, 1992, doi: 10.1097/00002517-199206000-00004.
[41] R.Craig Platenberg, G. B.Hubbard, W. J.Ehler, andC. J.Hixson, “Spontaneous disc degeneration in the baboon model: Magnetic resonance imaging and histopathologic correlation,” J. Med. Primatol., vol. 30, no. 5, pp. 268–272, 2001, doi: 10.1034/j.1600-0684.2001.d01-59.x.
[42] J.Zou, J.Qian, J.Ge, Q.Yan, C.Wu, andH.Yang, “Selection of the Optimal Puncture Needle for Induction of a Rat Intervertebral Disc Degeneration Model,” Pain Physician, pp. 353–360, 2019, [Online]. Available: www.painphysicianjournal.com.
[43] Kelly, “Solid Mechanics, Part I, Kelly, Section 10.1, Viscoelasticity,” pp. 283–342, 1830.
[44] W. C.Oliver, G. M.Pharr, andI.Introduction, “experiments,” 1992.
[45] Y. R.Jeng, C. P.Mao, andK.TeWu, “Instrumented indentation investigation on the viscoelastic properties of porcine cartilage,” J. Bionic Eng., vol. 10, no. 4, pp. 522–531, 2013, doi: 10.1016/S1672-6529(13)60239-5.
[46] D. A.Skoog, F. J.Holler, andS. R.Crouch, Principles of instrumental analysis. Cengage learning, 2017.
[47] F.Settle, Handbook of instrumental techniques for analytical chemistry, vol. 35, no. 06. 1998.
[48] H. H.Willard, L. L.Merritt, andJ. A.Dean, Instrumental Methods of Analysis, vol. 1, no. 2. 1952.
[49] E.Smith andG.Dent, Modern Raman Spectroscopy - A Practical Approach. 2005.
[50] J. M.Chalmers, H. G. M.Edwards, andM. D.Hargreaves, Infrared and Raman Spectroscopy in Forensic Science. 2012.
[51] R. L.McCreery, Raman Spectroscopy for Chemical Analysis, vol. 12, no. 5. 2001.
[52] M.Fleischmann, P. J.Hendra, andA. J.McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett., vol. 26, no. 2, pp. 163–166, 1974, doi: 10.1016/0009-2614(74)85388-1.
[53] M. J.Deveney, A. G.Walton, andJ. L.Koenig, “Raman spectra of imino acids and poly‐L‐hydroxyproline,” Biopolymers, vol. 10, no. 4, pp. 615–630, 1971, doi: 10.1002/bip.360100403.
[54] B. G.Frushour andJ. L.Koenig, “Raman scattering of collagen, gelatin, and elastin,” Biopolymers, vol. 14, no. 2, pp. 379–391, 1975, doi: 10.1002/bip.1975.360140211.
[55] K. A.Dehring, N. J.Crane, A. R.Smukler, J. B.McHugh, B. J.Roessler, andM. D.Morris, “Identifying chemical changes in subchondral bone taken from murine knee joints using raman spectroscopy,” Appl. Spectrosc., vol. 60, no. 10, pp. 1134–1141, 2006, doi: 10.1366/000370206778664743.
[56] S. K.Nayanar, A.Krishnan M, K. I.Mrudula, S. B.Thavarool P, andS.Thiagarajan, “Frozen section evaluation in head and neck oncosurgery: An initial experience in a tertiary cancer center,” Turk Patoloji Derg., vol. 35, no. 1, pp. 46–51, 2019, doi: 10.5146/tjpath.2018.01439.
[57] E.Brender, “Frozen Section Biopsy,” Jama, vol. 294, no. 24, p. 3200, 2005, doi: 10.1001/jama.294.24.3200.
[58] J.Jezek et al., “The role of vascularization on changes in ligamentum flavum mechanical properties and development of hypertrophy in patients with lumbar spinal stenosis,” Spine J., vol. 20, no. 7, pp. 1125–1133, 2020, doi: 10.1016/j.spinee.2020.03.002.
[59] N. D.Broom andH.Silyn‐Roberts, “Collagen‐collagen versus collagen‐proteoglycan interactions in the determination of cartilage strength,” Arthritis Rheum., vol. 33, no. 10, pp. 1512–1517, 1990, doi: 10.1002/art.1780331008.
[60] J.Sepitka, J.Lukeš, L.Staněk, E.Filová, Z.Burdíková, andJ.Rezníček, “Nanoindentation of intervertebral disc tissues localised by SHG imaging.,” Comput. Methods Biomech. Biomed. Engin., vol. 15 Suppl 1, pp. 335–336, 2012, doi: 10.1080/10255842.2012.713601.
[61] J. D.Currey, K.Brear, P.Zioupos, andG. C.Reilly, “Effect of formaldehyde fixation on some mechanical properties of bovine bone,” Biomaterials, vol. 16, no. 16, pp. 1267–1271, 1995, doi: 10.1016/0142-9612(95)98135-2.
[62] L.Rouleau, S.Delorme, F.Thibault, R.Mongrain, andR.Leask, “Effect of Formalin Fixation on the Local Mechanical Properties of Aortic Tissue,” no. January, 2005.
[63] Y.Ling et al., “Effects of fixation and preservation on tissue elastic properties measured by quantitative optical coherence elastography (OCE),” J. Biomech., vol. 49, no. 7, pp. 1009–1015, 2016, doi: 10.1016/j.jbiomech.2016.02.013.
[64] S. H.Park, Y. G.Kim, D.Kim, H.DuCheong, W. S.Choi, andJ. I.Lee, “Selecting characteristic raman wavelengths to distinguish liquid water, water vapor, and ice water,” J. Opt. Soc. Korea, vol. 14, no. 3, pp. 209–214, 2010, doi: 10.3807/JOSK.2010.14.3.209.
[65] G.Penel, C.Delfosse, M.Descamps, andG.Leroy, “Composition of bone and apatitic biomaterials as revealed by intravital Raman microspectroscopy,” Bone, vol. 36, no. 5, pp. 893–901, 2005, doi: 10.1016/j.bone.2005.02.012.
[66] M.Kazanci, P.Roschger, E. P.Paschalis, K.Klaushofer, andP.Fratzl, “Bone osteonal tissues by Raman spectral mapping: Orientation-composition,” J. Struct. Biol., vol. 156, no. 3, pp. 489–496, 2006, doi: 10.1016/j.jsb.2006.06.011.
[67] S.Murab andS.Ghosh, “Impact of osmoregulatory agents on the recovery of collagen conformation in decellularized corneas,” Biomed. Mater., vol. 11, no. 6, 2016, doi: 10.1088/1748-6041/11/6/065005.
[68] A.Masic et al., “Observations of multiscale, stress-induced changes of collagen orientation in tendon by polarized Raman spectroscopy,” Biomacromolecules, vol. 12, no. 11, pp. 3989–3996, 2011, doi: 10.1021/bm201008b.
[69] M.Quade et al., “Strontium-modification of porous scaffolds from mineralized collagen for potential use in bone defect therapy,” Mater. Sci. Eng. C, vol. 84, pp. 159–167, 2018, doi: 10.1016/j.msec.2017.11.038.
[70] M. C.Caraher et al., “Raman spectroscopy predicts the link between claw keratin and bone collagen structure in a rodent model of oestrogen deficiency,” Biochim. Biophys. Acta - Mol. Basis Dis., vol. 1864, no. 2, pp. 398–406, 2018, doi: 10.1016/j.bbadis.2017.10.020.
[71] M. M.Ho, T. A. N.Kelly, X. E.Guo, G. A.Ateshian, andC. T.Hung, “Spatially varying material properties of the rat caudal intervertebral disc,” Spine (Phila. Pa. 1976)., vol. 31, no. 15, pp. 486–493, 2006, doi: 10.1097/01.brs.0000224532.42770.c1.
[72] M. D.Newton et al., “Nondestructive, indirect assessment of the biomechanical properties of the rat intervertebral disc using contrast-enhanced μCT,” J. Orthop. Res., vol. 36, no. 7, pp. 2030–2038, 2018, doi: 10.1002/jor.23850.
[73] J.Gosline, M.Lillie, E.Carrington, P.Guerette, C.Ortlepp, andK.Savage, “Elastic proteins: Biological roles and mechanical properties,” Philos. Trans. R. Soc. B Biol. Sci., vol. 357, no. 1418, pp. 121–132, 2002, doi: 10.1098/rstb.2001.1022.
[74] L.Yang et al., “Micromechanical bending of single collagen fibrils using atomic force microscopy,” J. Biomed. Mater. Res. - Part A, vol. 82, no. 1, pp. 160–168, 2007, doi: 10.1002/jbm.a.31127.