| 研究生: |
范宇軒 Fan, Yu-Xuan |
|---|---|
| 論文名稱: |
94-GHz CMOS電容性交互耦合中和技術功率放大器與電感性回授技術之功率放大器及應用於毫米波射頻接收機低雜訊放大器之研製 Research on 94-GHz PAs Using Capacitive Cross-Coupling Neutralization and Inductive Feedback Neutralization Techniques and 94-GHz Low Noise Amplifier for Millimeter-Wave RF Receiver |
| 指導教授: |
張志文
Chang, Chih-Wen |
| 共同指導教授: |
黃尊禧
Huang, Tzuen-Hsi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 94-GHz 、W-band 、CMOS 、毫米波 、功率放大器 、低雜訊放大器 |
| 外文關鍵詞: | CMOS, Millimeter-Wave (MMW), W-band, Low-noise amplifier (LNA), Neutrolization, Power amplifier (PA) |
| 相關次數: | 點閱:148 下載:19 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文晶片設計採用TSMC CMOS 90-nm製程,量測方面皆以on-wafer進行量測。論文第一部份為設計94-GHz CMOS電容性交互耦合中和技術功率放大器。,每級放大器皆使用電容性交互耦合中和技術提升隔離度及功率增益,輸入、輸出匹配以及各級放大器之級間匹配使用傳輸線製成之變壓器來完成匹配以及訊號的結合。
論文第二部分為設計94-GHz CMOS電感性回授技術之功率放大器。使用四級共源級差動架構,前三級放大器使用電感性回授技術提升隔離度及功率增益,最後一級輸出級使用電容性交互耦合中和技術提升隔離度及功率增益。輸入、輸出匹配以及各級放大器之級間匹配使用傳輸線製成之變壓器來完成匹配以及訊號的結合。
論文第三部份為研製設計一個應用於毫米波射頻接收機之94-GHz CMOS低雜訊放大器。低雜訊放大器採用共源極與共閘極形成疊接組態,再利用串接五級電路可將94-GHz的輸入訊號放大至一定的水準,而為了更有效抑制雜訊,本次設計分別在前兩級電路間加入雜訊匹配電感以達最佳化雜訊之功用。電路中之走線皆有透過適當彎折以達晶片面積之最佳利用,在佈局上皆採用M9當訊號線以減少訊號對基板的寄生電容所造成的損耗。
This thesis presents the research on 94-GHz power amplifiers (PAs) using capacitive cross-coupling neutralization technique and inductive feedback neutralization technique and 94-GHz low noise amplifier for millimeter-wave RF receiver in 90-nm CMOS. The first part is to introduce the design of 94-GHz PA using capacitive cross-coupling neutralization. The PA constructed four stage amplifier, which each stage consists of common source (CS) topology with using push-pull configuration. The amplifier of each stage uses capacitive cross-coupling neutralization to improve the isolation and stability of the PA, meanwhile, the small-signal gain of the PA also advanced due to the neutralized capacitor. The PA featured with transformer (TF) by using transmission line (TL) to achieve power combining and matching network, including input matching, power matching and conjugate matching. The second part is to introduce the design of the 94-GHz PA using inductive feedback neutralization technique. This work also presents four- stage PA design, which each stage consists of CS topology with using differential configuration to improve the linearity and output power. The PA stage uses capacitive cross-coupling neutralization to improve the isolation, power gain and stability of the PA stage, excluding the PA stage, the others use inductive feedback neutralization by using the effect of resonator to improve the isolation and power gain. The PA also featured with TF by using TL to achieve power combining and matching network. The third part of the design is Low Noise Amplifier for millimeter-wave RF receiver in 90-nm CMOS. The LNA constructed five-stage amplifiers, which each stage consists of cascode topology to advance higher power gain and isolation. The first and second stage amplifier featured with noise improvement inductor to reduce the noise contribution from common gate (CG) transistor.
參考文獻
[1] J. A. Howarth, A. P. Lauterbach, M. L. J. Boers, L. M. Davis, A. Parker, J. Harrison, J. Rathmell, M. Batty, W. Cowley, C. Burnet, L. Hall, D. Abbott, and N. Weste, “60 GHz radios: enabling next-generation wireless applications,” in Proc. TENCON 2005 region 10, Nov. 2005, pp. 1–6.
[2] RF atmospheric absorption / ducting Available:http://www.tscm.com/rf_absor.pdf
[3] IEEE 802.15 Working Group for WPAN. Available:http://www.ieee802.org/15
[4] S. Davis, B. Van Veen, S. Hagness, and F. Kelcz, “Breast tumor characterization based on ultrawideband microwave backscatter,” IEEE Trans. Biomed. Eng., vol. 55, no.1, pp. 237–246, Jan. 2008.
[5] A. Arbabian, S. Callender, S. Kang, B. Afshar, J.-C. Chien, and A. Niknejad, “A 90 GHz hybrid switching pulsed-transmitter for medical imaging,” IEEE J. Solid-State Circuits, vol. 45, no.12, pp. 2667–2681, Dec. 2010.
[6] K. Chang, RF and Microwave Wireless Systems, John Wiley, 2000.
[7] T. S. Rappaport, J. N. Murdock, and F. Gutierrez, "State of the Art in 60-GHz Integrated Circuits and Systems for Wireless Communications," Proceedings of the IEEE, vol. 99, no. 8, pp. 1390-1436, Aug. 2011.
[8] M. Marcus, and B. Pattan, “Millimeter wave propagation: spectrum management implications,” IEEE Microw. Mag., vol. 6, no. 2, pp. 54–62, 2005.
[9] C. Zhu and Z. Duan, "Design of 94-GHz Wideband Waveguide-Feed Patch Antenna and Array in eWLB Package," 2020 50th European Microwave Conference (EuMC), 2021, pp. 824-827.
[10] J. Svedin, L. Huss. A 94 GHz imaging radar system, FOI-R-1191-SE. Feb. 2004.
[11] S. S. M. Chung, C. Wu, Y. Chuang and H. Hsieh, "Preliminary design of 94 GHz E-band phase array antenna for future mobile communication," 2016 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC), 2016, pp. 899-902.
[12] A. Townley et al., "A 94-GHz 4TX–4RX Phased-Array FMCW Radar Transceiver With Antenna-in-Package," in IEEE Journal of Solid-State Circuits, vol. 52, no. 5, pp. 1245-1259, May 2017.
[13] A. Puglielli et al., "Design of Energy- and Cost-Efficient Massive MIMO Arrays," in Proceedings of the IEEE, vol. 104, no. 3, pp. 586-606, March 2016.
[14] Y. Chang, Y. Wang, C. Chen, Y. Wu and H. Wang, "A V-Band Power Amplifier With 23.7-dBm Output Power, 22.1% PAE, and 29.7-dB Gain in 65-nm CMOS Technology," in IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 11, pp. 4418-4426, Nov. 2019.
[15] Y. Lin and V. K. Nguyen, "94-GHz CMOS Power Amplifiers Using Miniature Dual Y-Shaped Combiner With RL Load," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 6, pp. 1285-1298, June 2017.
[16] S. C. Cripps, RF power amplifiers for wireless communications, Artech House, 2006.
[17] T. Suzuki, Y. Kawano, M. Sato, T. Hirose and K. Joshin, "60 and 77GHz Power Amplifiers in Standard 90nm CMOS," 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, 2008.
[18] C. Y. Law and A. Pham, "A high-gain 60GHz power amplifier with 20dBm output power in 90nm CMOS," 2010 IEEE International Solid-State Circuits Conference - (ISSCC), 2010.
[19] T. Xi, S. Huang, S. Guo, P. Gui, D. Huang and S. Chakraborty, "High-Efficiency E-Band Power Amplifiers and Transmitter Using Gate Capacitance Linearization in a 65-nm CMOS Process," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 64, no. 3, pp. 234-238, March 2017.
[20] C. Wu, Y. Lin, Y. Hsiao, C. Chou, Y. Wu and H. Wang, "Design of a 60-GHz High -Output Power Stacked- FET Power Amplifier Using Transformer-Based Voltage- Type Power Combining in 65-nm CMOS," in IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 10, pp. 4595-4607, Oct. 2018.
[21] S. C. Cripps, RF Power Amplifiers for Wireless Communications, 2nd ed., Norwood, MA: Artech House, 2006.
[22] 邱煥凱,射頻功率放大器設計講義,經濟部工業局半導體學院計畫短期國家晶片系統設計中心短期專業訓練課程,民國一百年。
[23] P. B. Kenington, High Linearity RF Amplifier Design, Norwood, MA: Artech House, 2000.
[24] Guillermo Gonzalez, Microwave transistor amplifiers: analysis and design, Prentice-Hall, Inc., Upper Saddle River, NJ, 1996
[25] 蔡兆璿,Ka頻段寬頻功率放大器設計,台灣大學電機資訊學院電信工程學研究所,民國一百零一年。
[26] L. Samoska, Kun-You Lin, Huei Wang, Yun-Ho Chung, Michael Aust, Sander Weinreb, Douglas Dawson., "On the stability of millimeter-wave power amplifiers," 2002 IEEE MTT-S International Microwave Symposium Digest (Cat. No.02CH37278), Seattle, WA, USA, 2002, pp. 429-432 vol.1.
[27] 蕭元鴻,互補式金氧半場效電晶體毫米波頻段功率放大器研製與效率改善之研究,台灣大學電機資訊學院電信工程學研究所,民國一百零一年。
[28] 張盛富,張嘉展,無線通訊射頻晶片模組設計-射頻晶片篇,全華科技,2008。
[29] B. Razavi, RF Microelectronics, 2nd ed., Prentice Hall, Inc., 1998.
[30] T. Suzuki, Y. Kawano, M. Sato, T. Hirose and K. Joshin, "60 and 77GHz Power Amplifiers in Standard 90nm CMOS," 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, San Francisco, CA, 2008, pp. 562-636.
[31] D. M. Pozar, Microwave Engineering, 3rd ed., John Wiley and Sons, Inc., 2005.
[32] J.-H. Tsai, Y.-L. Lee, T.-W. Huang, C.-M. Yu, and John G. J. Chern, “A 90-nm CMOS broadband and miniature Q-band balanced medium power amplifier,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2007, pp. 1129–1132.
[33] Y.-S. Jiang, J.-H. Tsai, and H. Wang, “A W-band medium power amplifier in 90 nm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 12, pp. 818–820, Dec. 2008.
[34] 呂知穎,毫米波CMOS低變化插入損耗相移器與非對稱型射頻收發開關之研製,成功大學電腦與通信工程研究所碩士論文,民國一百零一年。
[35] 李子瑋,CMOS毫米波功率放大器及94-GHz CMOS次諧波單混頻器射頻收發機之整合晶片設計研究,民國一百零五年。
[36] Edwin H. Colpitts, “System for the transmission of intelligence,” U.S. Patent 1137 384, April, 27, 1915.
[37] P. C. Hsu, C. Nguyen and M. Kintis, "Uniplanar broad-band push-pull FET amplifiers," in IEEE Transactions on Microwave Theory and Techniques, vol. 45, no. 12, pp. 2150-2152, Dec 1997.
[38] S. Toyoda, "Push-pull power amplifiers in the X band," 1997 IEEE MTT-S International Microwave Symposium Digest, Denver, CO, USA, 1997, pp. 1433-1436 vol.3.
[39] Z. Wang, "Wideband class AB (push-pull) current amplifier in CMOS technology," in Electronics Letters, vol. 26, no. 8, pp. 543-545, 14 April 1990.
[40] R. Ramachandran, S. Moghe, J. Girimaji and A. Podell, "6 to 18 GHz single-ended and push-pull MMIC amplifiers for high-gain modules," IEEE 1988 Microwave and Millimeter-Wave Monolithic Circuits Symposium. Digest of Papers., New York, NY, USA, 1988, pp. 15-18.
[41] M. Chongcheawchamnan, K. S. Ang, J. N. H. Wong and I. D. Robertson, "A Push-Pull Power Amplifier Using Novel Impedance-Transforming Baluns," 2000 30th European Microwave Conference, Paris, France, 2000, pp. 1-4.
[42] I. Aoki, S. D. Kee, D. B. Rutledge, and A. Hajimiri, “Fully integrated CMOS power amplifier design using the distributed active-transformer architecture,” IEEE J. Solid-State Circuits, vol. 37, no. 3, pp. 371–383, Mar. 2002.
[43] K. H. An, Ockgoo Lee, Hyungwook Kim, Dong Ho Lee, Jeonghu Han, Ki Seok Yang, Joy Laskar, et al."Power-Combining Transformer Techniques for Fully-Integrated CMOS Power Amplifiers," in IEEE Journal of Solid-State Circuits, vol. 43, no. 5, pp. 1064-1075, May 2008.
[44] Q. J. Gu, Z. Xu and M. C. F. Chang, "Two-Way Current-Combining W-Band Power Amplifier in 65-nm CMOS," in IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 5, pp. 1365-1374, May 2012.
[45] H. Asada, K. Matsushita, K. Bunsen, K. Okada and A. Matsuzawa, "A 60GHz CMOS Power Amplifier Using Capacitive Cross-Coupling Neutralization with 16% PAE," 2011 41st European Microwave Conference, Oct. 2011.
[46] C. Chou, Y. Hsiao, Y. Wu, Y. Lin, C. Wu and H. Wang, "Design of a V-Band 20-dBm Wideband Power Amplifier Using Transformer-Based Radial Power Combining in 90-nm CMOS," in IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 12, pp. 4545-4560, Dec. 2016.
[47] Z. Tsai, Y. Hsiao, H. Liao and H. Wang, "A 90-GHz power amplifier with 18-dBm output power and 26 GHz 3-dB bandwidth in standard RF 65-nm CMOS technology," 2013 IEEE MTT-S International Microwave Symposium Digest (MTT), 2013, pp. 1-3.
[48] H. Jia, B. Chi, L. Kuang and Z. Wang, "A W-Band Power Amplifier Utilizing a Miniaturized Marchand Balun Combiner," in IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 2, pp. 719-725, Feb. 2015.
[49] H. S. Son, J. Y. Jang, D. M. Kang, H. J. Lee and C. S. Park, "A 109 GHz CMOS Power Amplifier with 15.2 dBm Psat and 20.3 dB Gain in 65-nm CMOS Technology," in IEEE Microwave and Wireless Components Letters, vol. 26, no. 7, pp.510-512, July 2016.
[50] Y. Lin and V. K. Nguyen, "94-GHz CMOS Power Amplifiers Using Miniature Dual Y-Shaped Combiner with RL Load," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 6, pp. 1285-1298, June 2017.
[51] Y. Lin and K. Lan, "Design and Analysis of a 94 GHz CMOS Power Amplifier Using Miniature Current Combiner," 2020 IEEE Radio and Wireless Symposium (RWS), 2020, pp. 5-8.
[52] Y.S. Jiang, J.H. Tsai, and H. Wang, "A W-band medium power amplifier in 90nm CMOS" IEEE Microw. Wireless Compon. Lett., Vol.18 no.12, pp. 818-820, Dec. 2008
[53] Z Xu et al., "A 100–117 GHz W-band CMOS power amplifier with on-chip adaptive biasing[J]", IEEE MWCL, vol. 21, no. 10, pp. 547-549, 2011.
[54] G. Su, C. Chen, X. Gao, L. Sun, "A 129.5-151.5GHz Fully Differential Power Amplifier in 65nm CMOS" IEEE MTT-S International Wireless Symposium
[55] Y. Wang, C. C. Chiong, J. K. Nai and H. Wang, "A High Gain Broadband LNA in GaAs 0.15-μm pHEMT Process Using Inductive Feedback Gain Compensation for Radio Astronomy Applications," in IEEE International Symposium on Radio-Frequency Integration Technology(RFIT), August, 2015.
[56] T. Elazar, E. Socher, "95GHz 13dBm IQ-combined PA in 65nm CMOS," 50th European Microwave Conference, January 2021.
[57] 黃耘緯,W-Band CMOS低LO功率之環形次諧波混頻器與W-Band射頻接收機之研製,成功大學電腦與通信工程研究所,民國一百一十年。
[58] H. Shigematsu, T. Hirose, F. Brewer, M. Rodwell, "Millimeter-wave CMOS circuit design, " IEEE Trans. on Microwave Theory and Tech., vol. 53, no. 2, pp. 472–477, Feb. 2005.
[59] C. H. Doan, S. Emami, A. M. Niknejad, R. W. Brodersen, "Millimeter-wave CMOS design, " IEEE J. Solid-State Circuit, vol. 40, no. 1, pp. 144-155, Jan. 2005
[60] T. Yao, M. Q. Gordon, K. K. W. Tang, K. H. K. Yau, M..T. Yang, P. Schvan and S. P. Voinigescu, "Algorithmic Design of CMOS LNAs and PAs for 60-GHz Radio, " IEEE J. Solid-State Circuit, vol. 42, no. 5, pp. 1044-1057, May 2007
[61] C. H. Doan et al., "Millimeter-wave CMOS design, " IEEE J. Solid-State Circuit, vol. 40, no. 1, pp. 144-155, Jan. 2005.
[62] T. Yao et al., "Algorithmic design of CMOS LNAs and Pas for 60-GHz radio, " IEEE J. Solid-State Circuits, vol. 42, no. 5, pp. 1044–1057, May.2007.
[63] 周建章,94-GHz CMOS毫米波單混頻器次諧波射頻收發機晶片及具自動化洩漏迴波消除功能之60-GHz非接觸式人體呼吸訊號CMOS射頻感測晶片系統設計研究,成功大學電腦與通信工程研究所,民國一百零八年。
[64] B. J. Huang, K. Y. Lin and H. Wang, "Millimeter-Wave Low Power and Miniature CMOS Multicascode Low-Noise Amplifiers with Noise Reduction Topology, " in IEEE Transections On Microwave Theory And Techniques, vol. 57, no. 12, December 2009.
[65] S. P. Voinigescu, T. O. Dickson, R. Beerkens, I. Khalid, P.Westergaard, “A comparison of Si CMOS, SiGe BiCMOS, and InP HBT technologies for high-speed and millimeter-wave ICs,” Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Spet. 2004, pp. 111–114.
[66] Y. S. Jiang, Z.-M. Tsai, J.-H. Tsai, H.-T Chen, and H. Wang, “A 86-to-108 GHz amplifier in 90 nm CMOS,” IEEE Microw. Wireless Compon. Lett., IEEE, vol.18, no.2, pp.124–126, Feb. 2008.
[67] B. Heydari, M. Bohsali, E. Adabi, A.M. Niknejad, “Low-Power mm-Wave Components up to 104GHz in 90nm CMOS,” IEEE J. Solid-State Circuits, pp.200- 207, vol.18, Feb. 2007.
[68] C. H. Liao, C. H. Hsieh, R. Hu, D. C. Niu, Y. S. Shiao, “W-band 90nm CMOS LNA design,” IEEE Microwave Conference Proceedings, pp. 430-432, Dec. 2012.
[69] J. Oh, B. Ku and S. Hong, "A 77GHz CMOS medium power amplifier with transmission line transformers for multi-mode automotive radar system", APMC, pp. 769-771, 2013.
[70] 朱嗣堯,整合GIPD天線之60-GHz四路結合功率放大器與V-及W-Band之毫米波功率放大器研製,成功大學電腦與通信工程研究所,民國一百零六年。