| 研究生: |
張燕如 Chang, Yen-ju |
|---|---|
| 論文名稱: |
鋼結構火害反應之向量式有限元素法分析 Vector form Intrinsic Finite Element Analysis of Steel Structure in Fire Environment |
| 指導教授: |
邱耀正
Chiou, Yaw-Jeng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 鋼結構 、向量式有限元素法 、火害 |
| 外文關鍵詞: | steel structure, fire, vector form intrinsic finite element |
| 相關次數: | 點閱:117 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文使用向量式有限元素法火害數值模擬模式進行鋼結構於火害下之行為分析,採用不同荷重作用之簡支梁與簡支柱於全均溫溫度場進行分析,配合不同束制條件以及溫度場分佈狀況加以比較並且討論,進而應用於單跨門型鋼架,將其置於理想溫度場下與模擬真實火害之溫度場進行比較。根據本文數值分析結果顯示束制條件對於鋼結構於高溫狀態下之行為影響甚鉅,荷重大小之影響則無明顯差異。將數值分析結果與BSI規範進行比較,顯示規範僅能使用於鋼結構束制條件為簡支承且溫度場為全均溫狀態下,一但溫度場改變則規範所定義之臨界溫度即無法適用;就束制條件而言規範顯示束制條件越好越不保守,但實際上行為卻反而有助於提升整體結構安全性。
This paper presents a numerical simulation method so called the Vector form Intrinsic Finite Element (VFIFE) method for analyzing the nonlinear behavior of steel structure in fire. The steel structure is model in several fire state and support conditions. Form the result is understood that the obvious influence is support condition. And support condition is the more the better for structure. Compare the analysis result with BSI code, show the code can only be used in order to simply support beam or column and temperature field is distributed uniform, once temperature field changes the critical temperature namely unable to be suitable that the code defines; But the behavior contributes to improving the whole structure security instead in fact.
【1】 Ail, F., and O’Conner, D., “Structure Performance of Rotationnally Restrained Steel Columns in Fire,” Fire Safety Journal, Vol.36, p.679-691, 2001.
【2】 ASCE Manuals and Reports on Engineering Pratice No.78, “Structural Fire Protection,” ASCE, New York, 1992
【3】 Bennetts, I.D., Proe, D.J., and Thomas, I.R., “Guidelines for Assessment of Fire Resistance of Structural Steel Members,” AISC (Australian Institute of Steel Construction), p3, 1990
【4】 BSI, “Fire Tests on Building Materials and Structure,” Part20, Method for Determination of The Fire Resistance of Elements of Construction (General Principles), 1987
【5】 BSI, “Structural Use of Steelwork in Building,” Part1, Code of Practice for Design-Rolled and Welded Section, 2000
【6】 BSI, “Structural Use of Steelwork in Building,” Part8, Code of Practice for Fire Resistance Design, 2003
【7】 Buchanan, A., Moss, P., Seputro, J., and Welsh, R., “The Effect of Stress-Strain Relationships on the Fire Performance of Steel Beams,” Engineering Structures, Vol.26, p.1505-1515, 2004
【8】 Chen, C., Yao, B., Yang, Y., Cai, X., Zhang, H., and Wan, Y., “ Experimental Study on Temperature Distribution and Response Behaviors of Steel Element under Corner Fire Conditions.” Engineering Science, Vol.7, p.70-75, 2005
【9】 Cong, S.P, Liang, S.T., and Dong, Y.L., “Experimental Investigation of Behavior of Simple Supported Steel Beams under Fire,” Journal of Southeast University (Natural Science Edition), Vol.35 Sup(I), p.66-68, 2005
【10】 ECCS-Technical Committee 3, “European Recommendations for the Fire Safety of Steel Structures,” Elsevier Scientific, New York, 1983.
【11】 El-Rimawi, J.A., Burgess, I.W., and Plank, R.J., “Studies of the Behavior of Steel Subframes with Semi-Rigid Connections in Fire,” Journal of Constructional Steel Research, Vol.49, p.83-98, 1999.
【12】 EUROCODE3, “Design of Steel Structures-Prat1.2:General Rules-Structural Fire Design.” (DD ENV 1993-2-3:2001 Corrected and reprinted September).
【13】 Federal Emergency Management Agency, “World Trade Center Building Performance Study:Data Collection, Preliminary Observations, and Recommendations,” FEMA 403,2002
【14】 Ginda, G., Skowronski, W., “Elasto-Plastic Creep Behavior and Load Capacity of Steel Columns During Fire,” Journal of Constructional Steel Research, Vol.46, p.312-313, 1998.
【15】 ISO834-1, “Fire-Resistance Tests-Elements of Building Construction,” 1999
【16】 Iu, C.K., Chan, S.L., and Zha, X.X., “Nonlinear Pre-Fire and Post-Fire Analysis of Steel Frame,” Engineering Structures, Vol.27, p.1689-1702, 2005.
【17】 JIS, “A1340 Method of Fire Resistance Test for Structural Parts of Buildings,” 1994
【18】 Kaewkulchai, G., and Williamoson, E.B., “Beam Element Formulation and Solution Procedure for Dynamic Progressive Collapse Analysis,” Computers and Structures, Vol.82, p639-651, 2004
【19】 Landesmann, A., Batista, E.M., and Alves, J.L.D., “Implementation of Advanced Analysis Method for Steel-Framed Structures under Fire Conditions,” Fire Safety Journal, Vol.40, p.339-366, 2005
【20】 Liew, J.Y.R., “Advanced Analysis and Behavior of Steel Structure in Fire,” Progress in Steel Building Structures, Vol.5, p1-8, 2003.
【21】 Liu, T.C.H., Fahad, M.K., and Davies, J.M., “Experimental Investigation of Behavior of Axially Restrained Steel Beams in Fire,” Journal of Constructional Steel Research, Vol.58, p.1211-1230, 2002.
【22】 Rodrigues, J.P.C., Neves, I.C., and Valente, J.C., “Experimental Research on the Critical Temperature of Compressed Steel Elements with Restrained Thermal Elongation,” Fire Safety Journal, Vol.35, p77-98, 2000
【23】 Sun, Q., and Lu, S.X., “Research of Dynamic Characteristics of Inclined Beams Under Thermal Effect,” Journal of University of Science and Technology of China, Vol.35, p544-548, 2005.
【24】 Trahair, N.S., Bradford, M.A., and Nethercot, D.A., “The Behaviour and Design of Steel Structures to BS5950,” Spon Press, 2001
【25】 U.L.263, “Fire Test of Building Construction and Materials.” 1997
【26】 Wang, Y.C., “A Review of the Behavior of Steel Structures in Fire and A Suggestion for Future Experimental Research Studies,” Progress in Steel Building Structures, Vol.5, p9-16, 2003
【27】 Zhang, H., “Studies of Steel Structure Material Mechanical Performance under the Fire Condition,” Journal of the Chinese Peoele′s Armed Police Force Academy, Vol.20, p33-35, 2004.
【28】 上海市地方標準,建築鋼結構防火技術規程,2003。
【29】 中國國家標準局CNS,總號12514,建築物構造部份的耐火試驗法,台灣,2000。
【30】 李國強、賀軍利與蔣首超,約束剛梁的抗火試驗與驗算,土木工程學報,Vol.33,p23-26,2000
【31】 孫金香、高偉 譯,建築物綜合防火設計,天津科技翻譯出版公司,天津,1994。
【32】 莊有清,鋼材在高溫環境下之行為探討,國立成功大學土木工程研究所碩士論文,2004。