簡易檢索 / 詳目顯示

研究生: 林昱齊
Lin, Yu-Chi
論文名稱: 以停止訊號作業探討老年人抑制功能與補償反應
Using Stop-Signal Task to Investigate Inhibiting Function and Compensatory Responses in Elderly
指導教授: 謝淑蘭
Hsieh, Shu-Lan
學位類別: 碩士
Master
系所名稱: 社會科學院 - 心理學系
Department of Psychology
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 50
中文關鍵詞: 老化停止訊號作業前瞻性控制回應性控制事件關聯腦電位波補償反應
外文關鍵詞: aging, stop-signal task, proactive control, reactive control, compensatory effect
相關次數: 點閱:93下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究藉由停止訊號作業派典來探討老化對認知功能中的抑制功能所造成的影響;研究同時比較老年人與年輕人在行為和事件關聯腦電位波(event-related potentials, ERPs)上的差異。本研究操弄兩類停止訊號的停止規則於不同的作業區段:「整體停止作業」與「選擇停止作業」區段,藉此觀察抑制作業認知需求提升是否會影響老年人抑制功能的執行,而單純的「選擇反應作業」區段則用以做為比較的基準。透過行為資料比較兩組在前瞻性控制能力及回應性控制能力的差異。藉由比較含有停止訊號的作業區段(例如:「整體停止作業」與「選擇停止作業」區段)與單純的選擇反應作業區段中前進嘗試次反應時間的表現差異作為前瞻性控制能力指標,而回應性控制能力則由兩類停止作業區段之中的停止訊號嘗試次的反應時間差異來定義。結果發現老年人雖有整體反應時間變慢現象,但前瞻性控制能力並沒有出現退化現象;然而回應性控制能力卻發現老年人出現退化現象。從事件關聯腦電位波P3、N1和側邊準備腦電位波(lateralized readiness potential, LRP)的腦波振幅與其拓樸圖的結果來看,發現老年人在運作前瞻性控制功能時似乎啟動補償機制以提升其行為表現的結果,回應性控制功能雖試圖啟動補償卻無助行為表現。研究結果表示,執行停止訊號作業需要不只一種控制能力,且老年人在不同的能力上有不同程度的退化。

    The participants were 24 younger adults aged 20–30 years and 24 older adults aged 61–76 years. The task blocks were choice reaction-time blocks, global stop-signal blocks (with an auditory stop signal), and selective stop-signal blocks (with valid and invalid stop signals). At the same time, 32-channel event-related potential were recorded. Older adults did not exhibit augmented Go RT differences in the choice reaction and 2 stop-signal tasks, but differences in stop-signal RT showed declined reactive control ability among them. Moreover, ERP results revealed that the older adults developed a compensatory mechanism in proactive control to elevate their behavioral results, although the same result was not applied on reactive control.

    第一章 緒論 1 1.1 認知老化簡介 1 1.2 抑制功能與各種研究操弄 2 1.2.1 全面抑制與選擇抑制 4 1.2.2 反應選擇與動作選擇抑制 4 1.3 停止訊號作業與老化相關議題 5 1.4 本研究派典 7 1.5 研究動機與結果預測 10 第二章 研究方法 11 2.1 受試者 11 2.2 實驗設備與刺激 13 2.3 實驗設計與流程 14 2.4 電生理紀錄 15 2.5 資料分析 15 2.5.1 行為資料 16 2.5.2 腦波資料 16 2.5.2.1 前進嘗試次鎖定腦電位波:N1, P3 17 2.5.2.2 停止訊號鎖定腦電位波:N1, P3 17 2.5.2.3 刺激鎖定側邊準備腦電位波(stimulus-locked LRP) 18 2.5.2.4 反應鎖定側邊準備腦電位波(response-locked LRP) 18 第三章 實驗結果 19 3.1 行為結果 19 3.1.1 前進嘗試次 19 3.1.1.1 前進嘗試次反應時間 19 3.1.1.2 前進嘗試次反應遺漏率與錯誤率 19 3.1.2 停止訊號 20 3.1.2.1 停止訊號反應時間(SSRT)及停止訊號延遲時間(SSD) 20 3.1.2.2 停止訊號正確抑制率 21 3.1.3抑制失敗的停止訊號 21 3.1.3.1 失敗抑制反應時間(failed inhibition response time, FIRT)和前進嘗試次反應時間的比較 21 3.1.4忽略停止嘗試次 22 3.1.4.1忽略停止反應時間(IGRT)和前進嘗試次反應時間的比較 22 3.1.4.2忽略停止反應遺漏率(ignore stop omission)與錯誤率 22 3.2 腦波結果 23 3.2.1 前進嘗試次 23 3.2.1.1前進嘗試次P3 23 3.2.1.2前進嘗試次N1 24 3.2.2 停止訊號及忽略停止嘗試次 25 3.2.2.1停止訊號P3峰值振幅及峰值潛時 26 3.2.2.2停止訊號N1 28 3.2.2.3忽略停止P3峰值振幅及峰值潛時 28 3.2.2.4忽略停止N1峰值振幅及峰值潛時 29 3.2.3 側邊準備電位波(LRP) 30 3.2.3.1 前進嘗試次S-LRP初發潛時與峰值振幅 30 3.2.3.2 前進嘗試次R-LRP初發潛時與峰值振幅 31 3.2.3.3 停止訊號S-LRP初發潛時與峰值振幅 32 3.2.3.4 停止訊號R-LRP初發潛時與峰值振幅 33 3.2.3.5 忽略停止S-LRP初發潛時與峰值振幅 34 3.2.3.6 忽略停止R-LRP初發潛時與峰值振幅 34 第四章 結果討論 36 4.1行為資料 37 4.2腦波資料 39 4.2.1 P3結果討論 39 4.2.2 N1結果討論 40 4.2.3 LRP結果討論 41 4.3 結論 43 參考文獻 44

    Anguera, J. A., & Gazzaley, A. (2012). Dissociation of motor and sensory inhibition processes in normal aging. Clinical Neurophysiology, 123(4), 730-740. doi: 10.1016/j.clinph.2011.08.024

    Aron, A. R. From Reactive to Proactive and Selective Control: Developing a Richer Model for Stopping Inappropriate Responses. Biological Psychiatry, 69(12), e55-68. doi: j.biopsych.2010.07.024.

    Aron, A. R., Poldrack, R. A. (2006). Cortical and Subcortical Contributions to Stop Signal Response Inhibition: Role of the Subthalamic Nucleus. Journal of Neuroscience, 26(9), 2424-2433. doi: 10.1523/JNEUROSCI.4682-05.2006

    Band, G. P. H., van der Molen, M. W., & Logan, G. D. (2003). Horse-race model simulations of the stop-signal procedure. Acta Psychologica, 112(2), 105-142. doi: 10.1016/S0001-6918(02)00079-3

    Bedard, A. C., Nichols, S., Barbosa, J. A., Schachar, R., Logan, G. D., & Tannock, R. (2002). The development of selective inhibitory control across the life span. Developmental Neuropsychology, 21(1), 93-111. doi: 10.1207/S15326942DN2101_5

    Bekker, E. M., Kenemans, J. L., Hoeksma, M. R., Talsma, D., & Verbaten, M. N. (2005). The pure electrophysiology of stopping. International Journal of Psychophysiology, 55, 191-198. doi: 10.1016/j.ijpsycho.2004.07.005

    Bissett, P. G., & Logan, G. D. (2014). Selective Stopping? Maybe Not. Journal of Experimental Psychology: General, 143(1), 455-472. doi: 10.1037/a0032122

    Braver, T. (2007). The brain in control. Monitor on Psychology, 38(1), 69.

    Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults: The HAROLD model. Psychology and Aging, 17, 85-100.

    CabezaLab. (2011, Nov 28). Compensatory Brain Activity in Older Adults. Retrieved from cabezalab.org/compensatory-brain-activity-in-older-adults/

    Cattell, R. B. (1963). Theory of fluid and crystallized intelligence: A critical experiment. Journal of educational psychology, 54(1), 1.

    Cespón, J., Galdo-Álvarez, S., & Díaz, F. (2013). Age-related changes in ERP correlates of visuospatial and motor processes. Psychophysiology, 50, 743-757. doi: 10.1111/psyp.12063

    Davis, S. W., Dennis, N. A., Fleck, M. S., Daselaar, S. M., & Cabeza, R. (2008). Que PASA?: The posterior-anterior shift in aging. Cerebral Cortex, 18, 1201-1209.

    De Jong, R., Coles, M.G.H., Logan, G.D. (1995). Strategies and mechanisms in nonselective and selective inhibitory motor control. Journal of Experimental Psychology: Human Perception and Performance, 21(3), 498–511.

    De Jong, R., Coles, M. G. H., Logan, G. D., & Gratton, G. (1990). In Search of the Point of No Return: The Control of Response Processes. Journal of Experimental Psychology: Human Perception and Performance, 16(1), 164-182.

    Dempster, F. N. (1992). The rise and fall of the inhibitory mechanism: toward a unified theory of cognitive development and aging. Developmental Review, 12(1), 45-75. doi: 10.1016/0273-2297(92)90003-K

    Dempster, F. N., & Corkill, A. (1999). Interference and Inhibition in Cognition and Behivior: Unifying Themes for Educational Psychology. Educational Psychology Review, 11(1), 1-88. doi: 10.1023/a:1021992632168

    Dennis, N. A., & Cabeza, R. (2011). Age-related dedifferentiation of learning systems: an fMRI study of implicit and explicit learning. Neurobiology of Aging, 32(12), 2318.e17-e30. doi: 10.1016/j.neurobiolaging.2010.04.004

    Di Russo, F., Martínez, A., & Hillyard, S. A. (2003). Source Analysis of Event-related Cortical Activity during Visuo-spatial Attention. Cerebral Cortex, 13(5), 486-499. doi: 10.1093/cercor/13.5.486

    Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception and Psychophysics, 16, 143-149.

    Falkenstein, M., Hohnsbein, J., & Hoormann, J. (1994). Effects of choice complexity on different subcomponents of the late positive complex of the event-related potential. Electroencephalography and Clinical Neurophysiology, 92(2), 148-160. doi: 10.1016/0168-5597(94)90055-8

    Grady, C. L., & Craik, F. I. M. (2000). Changes in memory processing with age. Current Opinion in Neurobiology, 10(2), 224-231. doi: 10.1016/s0959-4388(00)00073-8

    Hasher, L., & Zack, R. T. (1988). Working Memory, Comprehension and Aging: A Review and a New View. In G. H. Bower (Ed.), Psychology of Learning and Motivation (Vol. Volume 22, pp.193-225): Academic Press.

    Hillyard, S. A., Hink, R. F., Schwent, V. L., & Picton, T. W. (1973). Electrical Signs of Selective Attention in the Human Brain. Science, 182(4108), 177-180. doi: www.jstor.org/stasble/1736100

    Hsieh, S., & Fang, W. (2012). Elderly adults through compensatory responses can be just as capable as young adults inhibiting the flanker influence. Biological Psychology, 90, 113-126. doi: 10.1016/j.biopsycho.2012.03.006

    Hsieh, S., & Lin, Y. C. (2014). The boundary condition for observing compensatory responses by the elderly in a flanker-task paradigm. Biological Psychology, 103, 69-82. doi: 10.1016/j.biopsycho.2014.08.008

    Hughes, M. E., Fulham, W. R., Johnston, P. J., & Michie, P. T. (2012). Stop-signal response inhibition in schizophrenia: Behavioural, event-related potential and functional neuroimaging data. Biological Psychology, 89, 220-231. doi: 10.1016/j.biopsycho.2011.10.013

    Jacoby, L., Kelley, C., & Mcelree, B. (1999). The role of cognitive control: early selection versus late correction. In S. Chaiken and T. Yaacov (Eds.), Dual Process Theories in Social Psychology (pp. 383–340). New York, NY: Guilford Press.

    Jodo, E., & Inoue, K. (1990). Effects of practice on the P300 in a Go/NoGo task. Electroencephalography and Clinical Neurophysiology, 76, 249-257.

    Kail, R. (1997). The neural noise hypothesis: evidence from processing speed in adults with multiple sclerosis. Aging Neuropsychology Cognition, 4, 157-165.

    Kleerekooper, I., van Rooij, S.J., van den Wildenberg, W. P., de Leeuw, M., Kahn, R. S., & Vink, M. (2016). The effect of aging on fronto-striatal reactive and proactive inhibitory control. Neuroimage, 132, 51-58. doi: 10.1016/j.neuroimage.2016.02.031
    Kok, A. (2001). On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology, 38(3), 557-577. doi: 10.1017/s0048577201990559

    Kok, A., Ramautar, J. R., De Ruiter, M. B., Band, G. P. H., & Ridderinkhof, K. R. (2004). ERP components associated with successful and unsuccessful stopping in a stop-signal task. Psychophysiology, 41, 9-20. doi: 10.1046/j.1469-8986.2003.00127.x

    Kramer, A. F., Humphrey, D. G., Larish, J. E., Logan, G. D., & Strayer, D. L. (1994). Aging and inhibition: Beyond a unitary view of inhibitory processing in attention. Psychology and Aging, 9(4), 491-512. doi: 10.1037/0882-7974.9.4.491

    Kray, J., Kipp, K. H., & Karbach, J. (2009). The development of selective inhibitory control: The influence of verbal labeling. Acta Psychologica, 130(1), 48-57. doi: 10.1016/j.actpsy.2008.10.006

    Kutas, M., & Donchin, E. (1980). Preparation to Respond as Manifested by Movement-Related Brain Potential. Brain Research, 202(1), 95-115. doi: 10.1016/s0006-8993(80)80037-0

    Levitt, H. (1971). Transformed up–down methods in psychoacoustics. The Journal of the Acoustical Society of America, 49, 467. doi: 10.1121/1.1912375

    Logan, G. D. (1981). Attention, automaticity, and the ability to stop a speeded choice response. In: Long, J. & Baddeley, A. D. (Eds.), Attention and Performance IX. Hillsdale, NJ: Erlbaum.

    Logan, G. D., & Cowan, W. B. (1984). On the ability to inhibit thought and action: a theory of an act of control. Psychological Review, 91, 295-327.
    Madden, D. J., & Gottlob, L. R. (1997). Adult age differences in strategic and dynamic components of focusing visual attention. Aging, Neuropsychology, and Cognition, 4(3), 185-210. doi: 10.1080/13825589708256647

    Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual review of neuroscience, 24, 167-202. doi: 10.1146/annurev.neuro.24.1.167

    Myerson, J., Hale, S., Wagstaff, D., Poon, L., & Smith, G. (1990). The information-loss model: a mathematical theory of age-related cognitive slowing. Psychological Review, 97, 475-487.

    Nassauer, K. W., & Halperin, J. M. Dissociation of perceptual and motor inhibition processes through the use of novel computerized conflict tasks. Journal of the International Neuropsychological Society, 9(1), 25–30. doi: 10.1017/S1355617703910034

    Nigg, J. T. (2000). On inhibition/disinhibition in developmental psychopathology: Views from cognitive and personality psychology and a working inhibition taxonomy. Psychological Bulletin, 126(2), 220-246.

    Osman, A., & Moore, C. M. (1993). The locus of dual-task interference: Psychological refractory effects on movement-related brain potentials. Journal of Experimental Psychology: Human Perception and Performance, 19(6), 1292-1312. doi: 10.1037/0096-1523.19.6.1292

    Park, D. C., & Bischof, G. N. (2013). The aging mind: neuroplasticity in response to cognitive training. Dialogues in clinical neuroscience, 15(1), 109-119.

    Pfefferbaum, A., Ford, J. M., Weller, B. J., & Kopell, B. S. (1985). ERPs to response production and inhibition. Electroencephalography and clinical neurophysiology, 60(5), 423-434.

    Ramautar, J. R., Kok, A., & Ridderinkhof, K. R. (2004). Effects of stop-signal probability in the stop-signal paradigm: The N2/P3 complex further validated. Brain and Cognition, 56(2), 234-252. doi: 10.1016/j.bandc.2004.07.002

    Salthouse, T. A. (1994). The nature of the influence of speed on adult age differences in cognition. Developmental Psychology, 30, 240-259.

    Salthouse, T. A. (1996). The processing-speed theory of adult age differences in cognition. Psychological Review, 103, 403-428.

    Schlinkert, C. (2012). Aging and Inhibitory Motor Control: Global and Selective Stopping Ability in Young and Elderly Adults. (Research Master Psychology: Developmental Department). Retrieved from http://dare.uva.nl/cgi/arno/show.cgi?fid=467083

    Starns, J., & Ratcliff, R. (2010). The effects of aging on the speed- accuracy compromise: boundary optimality in the diffusion model. Psychology and Aging, 25, 377-390.

    Stuphorn V., & Emeric, E. E. (2012). Proactive and reactive control by the medial frontal cortex. Frontiers in Neuroengineering, 5, 9. doi: 10.3389/fneng.2012.00009

    Tsai, J. C., Chen, C. W., Chu, H., Yang, H. L., Chung, M. H., Liao, Y. M., & Chou, K. R. (2016). Comparing the sensitivity, specificity, and predictive values of the Montreal Cognitive Assessment and Mini-Mental State Examination when screening people for Mild Cognitive Impairment and Dementia in Chinese population. Archives of Psychiatric Nursing, 30(4), 486-491. doi: 10.1016/j.apnu.2016.01.015

    van de Laar, M. C., van den Wildenberg, W. P. M., van Boxtel, G. J. M., & van der Molen, M. W. (2011). Lifespan changes in global and selective stopping and performance adjustments. Frontiers in Psychology, 2, 357. doi: 10.3389/fpsyg.2011.00357

    van den Wildenberg, W. P. M., van Boxtel, G. J. M., & van der Molen, M. W. (2003). The duration of response inhibition in the stop-signal paradigm varies with response force. Acta Psychologica, 114(2), 115-129. doi: 10.1016/S0001-6918(03)00062-3

    Verbruggen, F., & Logan, G. D. (2009a). Models of response inhibition in the stop-signal and stop-change paradigms. Neuroscience and Biobehavioral Reviews, 33(5), 647-661. doi: 10.1016/j.neubiorev.2008.08.014

    Verbruggen, F., & Logan, G. D. (2009b). Proactive adjustments of response strategies in the stop-signal paradigm. Journal of Experimental Psychology: Human Perception and Performance, 35, 835-854. doi: 10.1037/a0012726
    Verbruggen, F., & Logan, G. D. (2015). Evidence for capacity sharing when stopping. Cognition, 142, 81-95. doi: 10.1016/j.cognition.2015.05.014

    Wang, C. H., Chang, C. C., Liang, Y. M., Shih, C. M., Chiu, W. S., Tseng, P., … Juan, C. H. (2013). Open vs. Closed Skill Sports and the Modulation of Inhibitory Control. PLoS ONE, 8(2): e55773. doi: 10.1371/journal.pone.0055773

    West, R. L. (1996). An application of prefrontal cortex function theory to cognitive aging. Psychological Bulletin, 120, 272-292.

    Williams, B. R., Ponesse, J. S., Schachar, R. J., Logan, G. D., & Tannock, R. (1999). Development of inhibitory control across the life span. Developmental Psychology, 35(1), 205-213. doi: 10.1037/0012-1649.35.1.205

    Woldorff, M. G. (1993). Distortion of ERP averages due to overlap from temporally adjacent ERPs: analysis and correction. Psychophysiology, 30(1), 98-119.

    Zandbelt, B. B., & Vink, M. (2010). On the Role of the Striatum in Response Inhibition. PLoS ONE, 5(11): e13848. doi: 10.1371/journal.pone.0013848

    下載圖示 校內:2020-05-01公開
    校外:2020-05-01公開
    QR CODE