| 研究生: |
沈芳綺 Shen, Fang-Chi |
|---|---|
| 論文名稱: |
探討Rhodostomin 的XRGD Motif 在辨識整
合蛋白上所扮演的角色 The role of the XRGD Motif of Rhodostomin in Integrins Recognition |
| 指導教授: |
莊偉哲
Chuang, Woei-Jer |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 整合蛋白 、去整合蛋白 |
| 外文關鍵詞: | RGD motif, Integrin, disintegrin |
| 相關次數: | 點閱:98 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
整合蛋白(Integrins)存在於細胞表面的穿膜受體,由α、β次單元所組合而成的異質雙體,媒介著細胞間及與細胞外間質的作用,其所活化的訊息傳遞路徑調控著細胞的生理功能,包括: 細胞黏著、遷移、凋亡以及增生。在許多的細胞外間質中,有整合蛋白結合的序列RGD (Arg-Gly-Asp) motif,而此序列也廣泛地存在於自然界中的蛇毒去整合蛋白,使得這些去整合蛋白可以作為整合蛋白的拮抗劑。在過去關於去整合蛋白研究中,發現了RGD motif 周圍的序列會影響去整合蛋白對整合蛋白辨識,例如:當我們將位於RGD motif N-terminal 的胺基酸由Proline 改變成Alanine 後,會使得去整合蛋白對於整合蛋白α5β1 的親和力增加。因此,在我的研究中,我們想要利用Rhodostomin (Rho)這個去整合蛋白當作一個模板來研究XRGD motif 的X對於去整合蛋白辨識整合蛋白的影響。Rhodostomin (Rho)是一個從馬來腹蛇蛇毒純化出來的去整合蛋白,總共有68 個胺基酸,在結構上帶有6 對雙硫鍵,而且在第48-53 的位置上帶有一個PRGDMP motif。在成功的利用P. pastoris 的蛋白表現系統表現了17 株Rho蛋白的突變株後,根據抑制血小板凝集實驗和細胞黏著抑制實驗所得到的數據,發現位於RGD motif N-terminal 的胺基酸確實在去整合蛋白辨認整合蛋白上扮演著重要的角色。根據17 個Rho 蛋白突變株在抑制整合蛋白αvβ3、α5β1、和αIIbβ3 所得到的IC50數值倍數的改變分別是0.6-3.2 倍、0.2-18 倍、和0.7-30 倍,由這樣的結果可以發現,當我們改變位於RGD motif N-terminal 的胺基酸時,對去整合蛋白和整合蛋白的影響是αIIbβ3>α5β1>αvβ3。我們也發現,當位於RGD motif N-terminal 的胺基酸為酸性胺基酸(Glu 和Asp)時,對於整合蛋白αvβ3 的抑制是有選擇性的。當序列為GRGDMP 時,對於整合蛋白α5β1 和αvβ3 的抑制是有選擇性的。這樣的結果能夠提供做為日後設計對整合蛋白αvβ3 和α5β1 具有特異性的去整合蛋白藥物的參考資料。
Integrins are a large family of α β heterodimeric receptors on cell surface. There are 24 integrins have been identified in mammals, and they mediate cell to cell and extraceullar matrix (ECM) interactions and regulate cell processes, including adhesion, migration, proliferation, and apoptosis. Many members of the integrin family recognize an Arg-Gly-Asp (RGD) motif within their ligands. Disintegrins are a family of RGD-containing proteins isolated from snake venoms and are the most potent integrin antagonists. It is reported that the residues flanking the RGD motif of integrin ligands are important for regulating integrin recognition. For example, it has been demonstrated that the mutation of the residue N-terminal to the RGD motif from proline to alanine on disintegrins can enhance their recognition of integrin α5β1. In this study I used rhodostomin (Rho) as the scaffold to study the role of the residue in the XRGD motif in recognizing integrins. Rho is a disintegrin that contain 68 amino acid including 6 disulfide bonds and a PRGDMP sequence at the positions of 48-53. In this study I have successfully expressed and purified seventeen XRGD mutants in the P. pastoris expression system. According to the results of cell adhesion and platelet aggregation assays, I found that the residue N-terminal to the RGD motif of Rho plays an important role for their integrin recognition. The mutations on the residue N-terminal to the RGD motif in inhibiting integrins αvβ3, α5β1, and αIIbβ3 have affinity changed of 0.6-3.2 folds, 0.2-18 folds, and 0.7-30 folds, respectively. These findings showed that the residue N-terminal to the RGD motif of Rho was more sensitive to integrin α5β1. We also found that Rho mutants containing acidic residues (D and E) N-terminal to the RGD motif selectively inhibited integrin αvβ3, and Rho mutant containing the GRGD motif selectively inhibited integrins αvβ3 and α5β1. The results of this study will serve as the basis for designing integrins αvβ3 and α5β1-specific disintegrins.
Alder M, Lazarus RA, Dennis MS, Wagner G. Solution structure of kistrin, a potent platelet aggregation inhibitor and GP IIb-IIIa antagonist. Science. 253: 445-8, 1991.
Altieri DC, Plescia J, Plow EF. The structural motif glycine 190-valine 202 of the fibrinogen gamma chain interacts with CD11b/CD18 integrin (alpha M beta 2, Mac-1) and promotes leukocyte adhesion. J Biol Chem. 268: 1847-53, 1993.
Anderluh M, Cesar J, Stefanic P, Kikelj D, Janes D, Murn J, Nadrah K, Tominc M, Addicks E, Giannis A, Stegnar M, Dolenc MS. Design and synthesis of novel platelet fibrinogen receptor antagonists with 2H-1,4-benzoxazine-3(4H)-one scaffold. A systematic study. Eur J Med Chem. 40: 25-49, 2005.
Arnaout MA, Mahalingam B, Xiong JP. Integrin Structure, Allostery, and Bidirectional Signaling. Annu Rev Cell Dev Biol. 21: 381-410, 2005.
Berman AE, Kozlova NI, Morozevich GE. Integrins: structure and signaling. Biochemistry.68: 1284-99, 2003.
Beviglia, L., Stewart, G. J. , Niewiarowski, S. Effect of four disintegrins on the adhesive
and metastatic properties of B16F10 melanoma cell in a murine model. Oncol. Res.
7,7-20,1995.
Block E, Glass RS, Jacobsen NE, Johnson S, Kahakachchi C, Kaminski R, Skowronska A,
Boakye HT, Tyson JF, Uden PC. Identification and synthesis of a novel selenium-sulfur
amino acid found in selenized yeast: Rapid indirect detection NMR methods for
characterizing low-level organoselenium compounds in complex matrices. J Agric Food
Chem. 52: 3761-71, 2004.
Chang CP, Chang JC, Chang HH, Tsai WJ, Lo SJ. Positional importance of Pro53 adjacent
to the Arg49-Gly50-Asp51 sequence of rhodostomin in binding to integrin alphaIIbbeta3.
Biochem J.357: 57-64, 2001.
Chang HH, Hu ST, Huang TF, Chen SH, Lee YH, Lo SJ. Rhodostomin, an
RGD-containing peptide expressed from a synthetic gene in Escherichia coli, facilitates the
attachment of human hepatoma cells. Biochem Biophys Res Commun. 190: 242-9, 1993.
Cochran AG, Tong RT, Starovasnik MA, Park EJ, McDowell RS, Theaker JE, Skelton NJ.
A minimal peptide scaffold for beta-turn display: optimizing a strand position in
disulfide-cyclized beta-hairpins. J Am Chem Soc. 123: 625-32, 2001.
Copie V, Tomita Y, Akiyama SK, Aota S, Yamada KM, Venable RM, Pastor RW, Krueger S,
Torchia DA. Solution structure and dynamics of linked cell attachment modules of mouse
fibronectin containing the RGD and synergy regions: comparison with the human
fibronectin crystal structure. J Mol Biol. 277: 663-82, 1998.
Daly R, Hearn MT. Expression of heterologous proteins in Pichia pastoris: a useful
experimental tool in protein engineering and production. J Mol Recognit. 18: 119-38, 2005.
Dennis MS, Carter P, Lazarus RA. Binding interactions of kistrin with platelet glycoprotein
IIb-IIIa: analysis by site-directed mutagenesis. Proteins. 15: 312-21, 1993.
Dresner-Pollak R, Rosenblatt M. Blockade of osteoclast-mediated bone resorption through
occupancy of the integrin receptor: a potential approach to the therapy of osteoporosis. J
Cell Biochem. 56: 323-30, 1994.
D'Souza SE, Ginsberg MH, Plow EF. Arginyl-glycyl-aspartic acid (RGD): a cell adhesion
motif. Trends Biochem Sci. 16: 246-50, 1991.
Erkki KoivunenS, David A. Gay, Erkki Ruoslahti. Selection of peptides binding to the α5β1
integrin from phage display library. J Biol Chem. 268:20205-20210, 1993.
Erkki Koivunen, Bingcheng Wang, Erkki Ruoslahti. Isolation of a highly specific ligand
for the α5β1 integrin from a phage display. J Biol Chem. 124: 373-380, 1994.
Faull RJ, Du X, Ginsberg MH.: Receptors on platelets. Methods Enzymol. 245: 183-94,
1994.
Gehlsen, K. R.; Davis, G. E. Sriramarao, P. Integrin expression in human melanoma cells
with differing invasive and metastatic properties. Clin. Exp. Metastasis 10, 111-120, 1992.
Goh KL, Yang JT, Hynes RO. Mesodermal defects and cranial neural crest apoptosis in
alpha5 integrin-null embryos. Development. 124: 4309-19, 1997.
Gould RJ, Polokoff MA, Friedman PA, Huang TF, Holt JC, Cook JJ, Neiwiarowski S.
Disintegrins: A family of integrin inhibitory proteins from viper venoms. Proc Soc Exp Bio.
Med. 195: 168-71, 1990.
Guo RT, Chou LJ, Chen YC, Chen CY, Pari K, Jen CJ, Lo SJ, Huang SL, Lee CY, Chang
TW, Chaung WJ. Expression in Pichia pastoris and characterization by circular dichroism
and NMR of rhodostomin. Proteins. 43: 499-508, 2001.
Harper M, Thompson TL, Zhu YN, Smith RL, Carden D, Coe L, Alexander B, Alexander
JS. Rapid, high-yield method for the bulk purification of fibronectin from human plasma.
BioTechniques. 28: 636-8, 2000.
Hautanen A, Gailit J, Mann DM, Ruoslahti E. Effects of modifications of the RGD
sequence and its context on recognition by the fibronectin receptor. J Biol Chem. 264:
1437-42, 1989.
Hemler ME, Huang C, Schwarz L. The VLA protein family. Characterization of five
distinct cell surface heterodimers each with a common 130,000 molecular weight beta
subunit. J Biol Chem. 262: 3300-9, 1987.
Higgins DR, Cregg JM, Editors. Methods in Molecular Biology: Pichia Protocols, Totowa,
NJ: Humana Press, 1998.
Hong SY, Sohn YD, Chung KH, Kim DS. Structural and functional significance of
disulfide bonds in saxatilin, a 7.7 kDa disintegrin. Biochem Biophys Res Commun. 293:
530-6, 2002.
Huang TF, Sheu JR, Teng CM, Chen SW, Liu CS. Triflavin, an antiplatelet
Arg-Gly-Asp-containing peptide, is a specific antagonist of platelet membrane
glycoprotein IIb-IIIa complex. J Biochem. 109: 328-34, 1991.
Huang TF, Yeh CH, Wu WB. Viper venom components affecting angiogenesis.
Haemostasis. 31: 192-206, 2001.
Huang YS, Chen Z, Yang ZY, Wang TY, Zhou L, Wu JB, Zhou LF. Preparation and
characterization of a potent,long-lasting recombinant human serum albumin-interferon-α2b
fusion protein expressed in Pichia pastoris, Eur. J. Pharm. Biopharm.67,301–308.2007.
Huang TF, Wu YJ, Ouyang C. Characterization of a potent platelet aggregation inhibitor
from Agkistrodon rhodostoma snake venom. Biochim Biophys Acta. 925: 248-57, 1987.
Humphries MJ. Cell-substrate adhesion assays. Current Protocols in Cell Biology.
9.1.1-9.1.11, 1998.
Humphries MJ. Integrin structure. Biochem Soc Trans. 28: 311-39, 2000.
Humphries MJ, Mould AP. Structure. An anthropomorphic integrin. Science. 294: 316-7,
2001.
Hynes RO. Integrins: a family of cell surface receptors. Cell. 48: 549-54, 1987.
Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 69:
11-25, 1992.
Jaseja M, Lu X, Williams JA, Sutcliffe MJ, Kakkar VV, Parslow RA, Hyde EI. 1H-NMR
assignments and secondary structure of dendroaspin, an RGD-containing glycoprotein
IIb-IIIa (alpha IIb-beta 3) antagonist with a neurotoxin fold. Eur J Biochem. 226: 861-8,
1994.
Judith M. Healy, Ohoshi Murayma, Toshinaga Maeda, Kazuhiro Yoshino, Kiyotoshi
Sekiguchi, Masakazu Kikuchit. Peptide Ligands for Integrin αVβ3 Selected from Random
Phage Display Libraries. Biochemistry 34: 3948-3955, 1995.
Kagami S, Kondo S, Loster K, Reutter W, Kuhara T, Yasutomo K, Kuroda Y.
Alpha1beta1 integrin-mediated collagen matrix remodeling by rat mesangial cells is
differentially regulated by transforming growth factor-beta and platelet-derived growth
factor-BB. J Am Soc Nephrol. 10: 779-89, 1999.
Kagami S, Kuhara T, Yasutomo K, Okada K, Loster K, Reutter W, Kuroda Y.
Transforming growth factor-beta (TGF-beta) stimulates the expression of beta1 integrins
and adhesion by rat mesangial cells. Exp Cell Res. 229: 1-6, 1996.
Kim S, Bell K, Mousa SA, Varner JA. Regulation of angiogenesis in vivo by ligation of
integrin alpha5beta1 with the central cell-binding domain of fibronectin. Am J Pathol. 156:
1345-62, 2000.
Koivunen E, Wang B, Ruoslahti E. Isolation of a highly specific ligand for the alpha 5 beta
1 integrin from a phage display library. J Cell Biol. 124: 373-80, 1994.
Koivunen E, Wang B, Ruoslahti E. Phage libraries displaying cyclic peptides with different
ring sizes: ligand specificities of the RGD-directed integrins. Biotechnology. 13: 265-70,
1995.
Krammer A, Craig D, Thomas WE, Schulten K, Vogel V. A structural model for force
regulated integrin binding to fibronectin’s RGD-synergy site. Matrix
Biol.21(2):139-47,2002.
Kulkarni GV, Chen B, Malone JP, Narayanan AS, George A. Promotion of selective cell
attachment by the RGD sequence in dentine matrix protein 1. Arch Oral Biol. 45: 475-84,
2000.
Kuntz ID. Structure-based strategies for drug design and discovery. Science. 257: 1078-82,
1992.
Lahteenmaki K, Edelman S, Korhonen TK. Bacterial metastasis: the host plasminogen
system in bacterial invasion. Trends Microbiol. 13: 79-85, 2005.
Lee JO, Rieu P, Arnaout MA, Liddington R. Crystal structure of the A domain from the
alpha subunit of integrin CR3 (CD11b/CD18). Cell. 80: 631-8, 1995.
LeMaster DM, Richards FM. 1H-15N heteronuclear NMR studies of Escherichia coli
thioredoxin in samples isotopically labeled by residue type. Biochemistry. 24: 7263-8,
1985.
Li R, Hoess RH, Bennett JS, DeGrado WF. Use of phage display to probe the evolution of
binding specificity and affinity in integrins. Protein Eng. 16: 65-72, 2003.
Locardi E, Mullen DG, Mattern RH, Goodman M. Conformations and pharmacophores of
cyclic RGD containing peptides which selectively bind integrin alpha(v)beta3. J Pept Sci.
5: 491-506, 1999.
Lueking A, Holz C, Gotthold C, Lehrach H, Cahill D. A system for dual protein expression
in Pichia pastoris and Escherichia coli. Protein Expr Purif. 20: 372-8, 2000.
Lu X, Janice A.W, John J. D, Rahman S. Preferential antagonism of the interactions of the
integrin αIIbβ3 with immobilized glycoprotein ligands by snake-venom RGD(Arg-Gly-Asp)
proteins. Biochem. J. 304, 929-936, 1994. (Printed in Great Britain)
Lu X, Rahman S, Kakkar VV, Authi KS. Substitutions of proline 42 to alanine and
methionine 46 to asparagine around the RGD domain of the neurotoxin dendroaspin alter
its preferential antagonism to that resembling the disintegrin elegantin. J Biol Chem. 271:
289-94, 1996.
Lu X, Lu D, Scully MF, Kakkar VV. Modulation of integrin-binding selectivity by
mutation within the RGD Loop of snake venom proteins: a novel drug development
approach. Curr Med Chem Cardiovasc Hematol Agents. 1(2):189-96,2003.
Lustbader JW, Birken S, Pollak S, Pound A, Chait BT, Mirza UA, Ramnarain S, Canfield
RE, Brown JM. Expression of human chorionic gonadotropin uniformly labeled with NMR
isotopes in Chinese hamster ovary cells: an advance toward rapid determination of
glycoprotein structures. J Biomol NMR. 7: 295-304, 1996.
Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM. Heterologous protein
production using the Pichia pastoris expression system. Yeast. 22: 249-70, 2005.
Marcinkiewicz C. Functional characteristic of snake venom disintegrins: potential
therapeutic implication. Curr Pharm. 11: 815-27, 2005.
Marcinkiewicz C, Calvete JJ, Vijay-Kumar S, Marcinkiewicz MM, Raida M, Schick P,
Lobb RR, Niewiarowski S. Structural and functional characterization of EMF10, a
heterodimeric disintegrin from Eristocophis macmahoni venom that selectively inhibits
alpha 5 beta 1 integrin. Biochemistry. 38: 13302-9, 1999.
Mark S. Dennis, Paul Carter, Robert A. Lazarus. Binding interaction of kistrin with platelet
glycoprotein IIb-IIa:analysis by site-directed mutagenesis. Proteins. 15:312-321,1993
Marcinkiewicz C, Vijay-Kumar S, McLane MA, Niewiarowski S. Significance of RGD
loop and C-terminal domain of echistatin for recognition of alphaIIb beta3 and alpha(v)
beta3 integrins and expression of ligand-induced binding site. Blood. 90: 1565-75, 1997.
Martin KH, Slack JK, Boerner SA, Martin CC, Parsons JT. Integrin connections map: to
infinity and beyond. Science. 296: 1652-3, 2002.
Marugan JJ, Manthey C, Anaclerio B, Lafrance L, Lu T, Markotan T, Leonard KA, Crysler
C, Eisennagel S, Dasgupta M, Tomczuk B. Design, synthesis, and biological evaluation of
novel potent and selective alphavbeta3/alphavbeta5 integrin dual inhibitors with improved
bioavailability. Selection of the molecular core. J Med Chem. 48: 926-34, 2005.
Matter ML, Zhang Z, Nordstedt C, Ruoslahti E. The alpha5beta1 integrin mediates
elimination of amyloid-beta peptide and protects against apoptosis. J Cell Biol. 141:
1019-30, 1998.
McDowell RS, Dennis MS, Louie A, Shuster M, Mulkerrin MG, Lazarus RA. Mambin, a
potent glycoprotein IIb-IIIa antagonist and platelet aggregation inhibitor structurally
related to the short neurotoxins. Biochemistry. 31: 4766-72, 1992.
McLane MA, Marcinkiewicz C, Vijay-Kumar S, Wierzbicka-Patynowski I, Niewiarowski
S. Viper venom disintegrins and related molecules. Proc Soc Exp Biol Med. 219: 109-19,
1998.
McLane MA, Sanchez EE, Wong A, Paquette-Straub C, Perez JC. Disintegrins. Curr Drug
Targets Cardiovasc Haematol Disord. 4: 327-55, 2004.
Minoux H, Chipot C, Brown D, Maigret B. Structural analysis of the KGD sequence loop
of barbourin, an alphaIIbbeta3-specific disintegrin. J Comput Aided Mol Des. 14: 317-27,
2000.
Monleon D, Esteve V, Kovacs H, Calvete JJ, Celda B. Conformation and concerted
dynamics of the integrin-binding site and the C-terminal region of echistatin revealed by
homonuclear NMR. Biochem J. 387: 57-66, 2005.
Monsalve RI, Lu G, King TP. Expressions of recombinant venom allergen, antigen 5 of
yellowjacket (Vespula vulgaris) and paper wasp (Polistes annularis), in bacteria or yeast.
Protein Expr Purif. 16: 410-6, 1999.
Morgan WD, Kragt A, Feeney J. Expression of deuterium-isotope-labelled protein in the
yeast Pichia pastoris for NMR studies. J Biomol NMR. 17: 337-47, 2000.
Morris GM, Goodsell DS, Huey R, Olson AJ. Distributed automated docking of flexible
ligands to proteins: parallel applications of AutoDock 2.4. J Comput Aided Mol Des. 10:
293-304, 1996.
Mousa SA. Anti-integrin as novel drug-discovery targets: potential therapeutic and
diagnostic implications. Curr Opin Chem Biol. 6: 534-41, 2002.
Nadrah K, Dolenc MS. Dual antagonists of integrins. Curr Med Chem. 12: 1449-66, 2005.
Pfaff M, McLane MA, Beviglia L, Niewiarowski S, Timpl R. Comparison of disintegrins
with limited variation in the RGD loop in their binding to purified integrins alpha IIb beta
3, alpha V beta 3 and alpha 5 beta 1 and in cell adhesion inhibition. Cell Adhes Commun. 2:
491-501, 1994.
Pierschbacher MD, Ruoslahti E. Influence of stereochemistry of the sequence
Arg-Gly-Asp-Xaa on binding specificity in cell adhesion. J Biol Chem. 262: 17294-8,
1987.
Plow EF, Haas TA, Zhang L, Loftus J, Smith JW. Ligand binding to integrins. J Biol Chem.
275: 21785-8, 2000.
Rahman S, Aitken A, Flynn G, Formstone C, Savidge GF. Modulation of RGD sequence
motifs regulates disintegrin recognition of alphaIIb beta3 and alpha5 beta1 integrin
complexes. Replacement of elegantin alanine-50 with proline, N-terminal to the RGD
sequence, diminishes recognition of the alpha5 beta1 complex with restoration induced by
Mn2+ cation. Biochem J. 335: 247-57, 1998.
Renhao Li, Ronald H.Hoess, Joel S.Bennett, William F. DeGrado. Use of phage display to
probe the evolution of binding specificity and affinity in integrins. Protein Eng. 16 : 65-72,
2003.
Rodriguez E, Krishna NR. An economical method for (15)N/(13)C isotopic labeling of
proteins expressed in Pichia pastoris. J Biochem. 130: 19-22, 2001.
Roivainen M, Piirainen L, Hovi T, Virtanen I, Riikonen T, Heino J, Hyypia T. Entry of
coxsackievirus A9 into host cells: specific interactions with alpha v beta 3 integrin, the
vitronectin receptor. Virology. 203: 357-65, 1994.
Ruouslahti E. RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol.
12: 697-715, 1996.
Rushika Sumathipala, Cunshuan Xu, Julian Seago, A. Paul Mould, Martin J. Humphries,
Sue E. Craig, Yatin Patel, Errol S. Wijelath, Michael Sobel, and Salman Rahman. The
“Linker” Region (Amino Acids 38–47) of the disintegrin elegantin is a novel inhibitory
domain of integrin α5β1-dependent cell adhesion on fibronectin. J Biol Chem. 281:49
37686-37696, 2006.
Sabine Kraft, Beate Diefenbach, Raj Mehta, Alfred Jonczyk, G. Albrecht Luckenbach,
Simon L. Goodman . Definition of an Unexpected Ligand Recognition Motif for α6β3
Integrin. J Biol Chem .274: 1979-1985, 1999.
Scarborough RM, Rose JW, Hsu MA, Phillips DR, Fried VA, Campbell AM, Nannizzi L,
Charo IF. Barbourin: A GPIIb-IIIa specific integrin antagonist from the venom of Sistrurus
m. barbouri. J Biol Chem. 266: 9359-62, 1991.
Scarborough RM, Rose JW, Naughton MA, Phillips DR, Nannizzi L, Arfsten A, Campbell
AM, Charo IF. Characterization of the integrin specificities of disintegrins isolated from
American pit viper venoms. J Biol Chem. 268: 1058-65, 1993.
Shimaoka M, Springer TA. Therapeutic antagonists and conformational regulation of
integrin function. Nat Rev Drug Discov. 2: 703-16, 2003.
Shimaoka M, Takagi J, Springer TA. Conformational regulation of integrin structure and
function. Annu Rev Biophys Biomol Struct. 31: 485-516, 2002.
Siddiqi AR, Persson B, Zaidi ZH, Jornvall H. Characterization of two platelet aggregation
inhibitor-like polypeptides from viper venom. Peptides. 13: 1033-7, 1992.
Smith JW, Le Calvez H, Parra-Gessert L, Preece NE, Jia X, Assa-Munt N. Selection and
structure of ion-selective ligands for platelet integrin alpha IIb(beta) 3. J Biol Chem. 277:
10298-305, 2002.
Smith JW, Piotrowicz RS, Mathis D. A mechanism for divalent cation regulation of beta
3-integrins. J Biol Chem. 269: 960-7, 1994.
Springer TA, Wang JH. The three-dimensional structure of integrins and their ligands, and
conformational regulation of cell adhesion. Adv Protein Chem. 68: 29-63, 2004.
Sutcliffe MJ, Jaseja M, Hyde EI, Lu X, Williams JA. Three-dimensional structure of the
RGD-containing neurotoxin homologue dendroaspin. Nat Struct Biol. 1: 802-7, 1994.
Takagi J, Petre BM, Walz T, Springer TA. Global conformational rearrangements in
integrin extracellular domains in outside-in and inside-out signaling. Cell. 110: 599-11,
2002.
Takagi J. Structural basis for ligand recognition by integrins. Current Opinion in Cell
Biology 19:557–564, 2007.
Tsai IH, Wang YM, Lee YH. Characterization of a cDNA encoding the precursor of
platelet aggregation inhibitor and metallproteinase from Trimeresurus mucrosquamatus
venom. Biochimica et Biophysica Acta. 1200:3,337-340,1994.
Tseng YL, Peng HC, Huang TF. Rhodostomin, a disintegrin, inhibits adhesion of
neutrophils to fibrinogen and attenuates superoxide production. J Biomed. Sci.
11(5):683-91.2004.
Tamkun JW, DeSimone DW, Fonda D, Patel RS, Buck C, Horwitz AF, Hynes RO.
Trikha M, De Clerck YA, Markland FS. Contortrostatin, a snake Venom disintegrin,
inhibits beta1 integrin-mediated human metastatic melanoma cell adhesion and blocks
experimental metastasis. Cancer Res.54, 4993-4998, 1994.
Mould AP, Askari JA, Aota S, Yamada KM, Irie A, Takada Y, Mardon HJ, Humphries MJ.
Defining the Topology of Integrin a5b1-Fibronectin Interactions Using Inhibitory Anti-a5
and Anti-β1 Monoclonal Antibodies. J Biol Chem. 11;272(28):17283-92.1997.
Wattam B, Shang D, Rahman S, Egglezou S, Scully M, Kakkar V, Lu X. Arg-Tyr-Asp
(RYD) and Arg-Cys-Asp (RCD) motifs in dendroaspin promote selective inhibition of
beta1 and beta3 integrins. Biochem J. 356: 11-7, 2001.
Wehrle-Haller B, Imhof BA. Integrin-dependent pathologies. J Pathol. 200: 481-7, 2003.
White CE, Kempi NM, Komives EA. Expression of highly disulfide-bonded proteins in
Pichia pastoris. Structure. 2: 1003-5, 1994.
Wierzbicka-Patynowski I, Niewiarowski S, Marcinkiewicz C, Calvete JJ, Marcinkiewicz
MM, McLane MA. Structural requirements of echistatin for the recognition of
alpha(v)beta(3) and alpha(5)beta(1) integrins. J Biol Chem. 274: 37809-14, 1999.
Wood MJ, Komives EA. Production of large quantities of isotopically labeled protein in
Pichia pastoris by fermentation. J Biomol NMR. 13: 149-159, 1999.
Wright PS, Saudek V, Owen TJ, Harbeson SL, Bitonti AJ. An echistatin C-terminal peptide
activates GPIIbIIIa binding to fibrinogen, fibronectin, vitronectin and collagen type I and
type IV. Biochem J. 293: 263-7, 1993.
Xiao T, Takagi J, Coller BS, Wang JH, Springer TA. Structural basis for allostery in
integrins and binding to fibrinogen-mimetic therapeutics. Nature. 432: 59-67, 2004.
Xiong JP, Stehle T, Diefenbach B, Zhang R, Dunker R, Scott DL, Joachimiak A, Goodman
SL, Arnaout MA. Crystal structure of the extracellular segment of integrin alpha Vbeta3.
Science. 294: 339-45, 2001.
Xiong JP, Stehle T, Zhang R, Joachimiak A, Frech M, Goodman SL, Arnaout MA. Crystal
structure of the extracellular segment of integrin alphaV beta3 in complex with an
Arg-Gly-Asp ligand. Science. 296: 151-5, 2002.
Xu B, Munoz I IG, Janson JC, Stahlberg J. Crystallization and X-ray analysis of native and
selenomethionyl beta-mannanase Man5A from blue mussel, Mytilus edulis, expressed in
Pichia pastoris. Acta Crystallogr D Biol Crystallogr. 58: 542-5, 2002.
Yang RS, Chiang HS, Tang CH, Yeh CS, Huang TF. Rhodostomin inhibits
thrombin-enhanced adhesion of ROS 17/2.8 cells through the blockade of alphavbeta3
integrin. Toxicon. 46: 387-93, 2005.
Mao Y, Schwarzbauer JE. Accessibility to the fibronectin synergy site in a 3D matrix
regulates engagement of α5β1 versus αvβ3 integrin receptors. Cell Commun Adhes.
13(5-6):267-77,2006.
Yatohgo T, Izumi M, Kashiwagi H, Hayashi M. Novel purification of vitronectin from human plasma by heparin affinity chromatography. Cell Struct Funct. 13: 281-92, 1988.
郭瑞庭 馬來蝮蛇蛇毒基因的選殖及蛇毒蛋白之功能及三度空間結構之研究。國立成功大學生物化學研究所碩士論文,1998。
陳彥青 馬來蝮蛇蛇毒蛋白及其突變株的結構與動力學之研究。國立成功大學生物化學研究所碩士論文,2001。
許家豪 含RGD序列蛋白在辨識組合蛋白上的結構與功能關係之研究。國立成功大學生物化學研究所碩士論文,2003。
劉祐禎 利用馬來蝮蛇蛇毒蛋白突變株研究在辨識組合蛋白αvβ3和α5β1的結構決定要素。國立成功大學生物化學研究所碩士論文,2004。
陳秋月 利用馬來蝮蛇去整合蛋白以研究整合蛋白們所辨識的序列和製備胺基酸選擇性同位素標示的蛋白。國立成功大學基礎醫學研究所博士論文,2005。
杜威德 利用Rhodostomin 當模板設計具整合蛋白α5β1 專一性之拮抗劑。國立成功大學生物化學研究所碩士論文,2006。