| 研究生: |
陳威廷 Chen, Wei-ting |
|---|---|
| 論文名稱: |
生物可分解聚酯類高分子相容性和作用力之光譜與熱分析 Spectroscopy and Thermal Analyses on Miscibility and Interactions in Blends of Biodegradable Polyesters |
| 指導教授: |
吳逸謨
Woo, Eamor M. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | 相容性 、UCST 、生物可分解聚酯類高分子 、分子間作用力 、高分子摻合體 |
| 外文關鍵詞: | intermolecular interaction, phase behavior, polymer blend, miscibility, biodegradable polyester |
| 相關次數: | 點閱:101 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
兩成分摻合包含生物可分解聚酯類、共聚酯類或脂肪族聚酯類高分子如poly(D,L-lactic acid) (PDLLA)、poly(3-hydroxybutyric acid) (PHB)、poly(L-lactic acid) (PLLA)、poly(D-lactic acid) (PDLA)、或poly(butylene adipate)-co-poly(butylene terephthalate) [P(BA-co-BT)]之相行為、相容性及作用力進行探討。並利用微分掃瞄熱卡計(DSC)、穿透式光學(偏光)顯微鏡(POM)、與傅立葉轉換紅外光譜儀(FT-IR)針對摻合體進行光譜與熱分析。另外,也探討化學結構中包含酚基之高分子poly(4-vinyl phenol) (PVPh)與生物可分解聚酯類或共聚酯類高分子進行摻合之相容性。故將分為以下兩部分敘述:
(1) 兩成分生物可分解聚酯類高分子摻合與加入PVPh形成三成分摻合系統
經由相型態以及熱分析,兩成分PDLLA/PHB摻合為部分相容系統。而兩成分PDLLA/PESu摻合系統則發現存有上臨界溶液溫度(upper critical solution temperature;UCST)行為,其在室溫為完全不相容,但經升溫至較高溫度時則轉變為相容,且隨著組成不同而溫度有所改變,最高之clarity point標記為兩成分系統之UCST,其溫度約為268oC。升溫至UCST而達相容狀態之PLAs/PESu摻合系統,可藉由溶劑再溶解方式回到相分離型態。利用升溫至UCST之摻合體冷卻後會呈現準相容狀態之特性,以平衡熔點下降來估算作用力參數(X12),其結果為負值。而PDLLA/PESu在UCST呈相容狀態之相容性也藉由PESu球晶成長速率下降再次佐證。此外若以較低分子量之PLLA或PDLA來取代PDLLA,各自分別與PESu進行摻合(PLA分子量由157,000 g/mol for PDLLA降低至152,000 g/mol for PLLA及124,000 g/mol for PDLA),則此兩組系統之相型態仍呈現和PDLLA/PESu摻合系統相似之UCST行為,且其相轉變溫度隨著PLA分子量的降低而下降,與PLA化學結構中L/D monomer比例含量的變化並無相關。
當加入PVPh而成為PDLLA/PESu/PVPh三成分摻合系統時,發現為完全不相容,僅部分組成存在如同兩成分摻合之UCST相行為,且其相轉變溫度較原先兩成分摻合系統來得低。
(2) PVPh/生物可分解共聚合物P(BA-co-BT)、PBA/PBT與PBA/PBT/PVPh摻合系統
PVPh與新穎生物可分解共聚合物P(BA-co-BT)摻合系統的相型態及Tg對組成相依性亦在本研究中作一深入的討論。DSC單一Tg的現象證明了此系統為一相容的系統,另外POM的結果亦對DSC所提供判定相容的證據作了再一次的佐證;當利用Kwei方程式對P(BA-co-BT)/PVPh之Tg對組成相依性作一描述並與PBA/PVPh和PBT/PVPh的結果相比對下,可發現P(BA-co-BT)/PVPh之q值介於兩系統之間([P(BA-co-BT)]/PVPh的q值為-82;而PBT/PVPh和PBA/PVPh的q值分別為5及-225),此結果意指P(BA-co-BT)/PVPh系統的分子間作用力弱於PBT/PVPh摻合系統。FT-IR光譜則顯現出氫鍵作用力存在於P(BA-co-BT)的羰基團與PVPh的酚基之間。利用IR氫氧吸收帶的分析可估算不同摻合物間其平均氫鍵強度之強弱趨勢為PBT/PVPh > P(BA-co-BT)/PVPh > PBA/PVPh,由於PBA對PVPh間的氫鍵強度小於PBT對PVPh的強度,由此趨勢可確認在P(BA-co-BT)/PVPh摻合物中, PBA鏈段亦對於整體的作用力強度有所供獻。另外,PBA/PBT兩成分系統由POM的觀察結果發現呈現相分離的相型態,而三成分的PBA/PBT/PVPh摻合則為部分相容的系統,其原因在於少量的PVPh較易與PBT形成氫鍵作用力,以致產生delta X效應而導致不相容;而在PVPh含量較多時,則能和PBA或PBT形成強度相似的氫鍵作用力鍵結,使兩分子對間作用力之不對稱性(delta X)因素降至最低而形成相容系統。另外在與和P(BA-co-BT)/PVPh相同組成下之三成分PBA/PBT/PVPh,比較其氫鍵羰基鍵結吸收峰之比例,發現兩組系統之氫鍵鍵結比例十分相似。
Binary blends comprising biodegradable polyesters, copolyesters, or aliphatic polyesters, such as poly(D,L-lactic acid) (PDLLA), poly(3-hydroxybutyric acid) (PHB), poly(ethylene succinate) (PESu), poly(L-lactic acid) (PLLA), and poly(D-lactic acid) (PDLA) homopolymers, or poly(butylene adipate)-co-poly(butylene terephthalate) [P(BA-co-BT)], were characterized to reveal thermodynamic phase behavior, miscibility, and interactions. Characterization and analyses were based on techniques of differential scanning calorimeter (DSC), polarized-light optical microscopy (POM), and Fourier transform infrared spectroscopy (FT-IR). Blends of biodegradable polyesters or copolymers with a phenol-containing polymer, poly(4-vinyl phenol) (PVPh) were also investigated. The result shows that the PDLLA/PHB blend is partially miscible. The binary PDLLA/PESu blend exhibits a UCST behavior, which is immiscible at ambient temperature but can become miscible upon heating to higher temperatures at ~268oC. The blends upon quenching from above UCST could be frozen into a quasi-miscible state, where the Flory-Huggins interaction parameter (X12) was determined to be a negative value (by melting-point-depression technique). The miscibility in PDLLA/PESu blend resulted in significant reduction in spherulite growth rate of PESu in the miscible state. The PLAs/PESu blends at UCST could be reverted back to the original phase-separated morphology, as proven by solvent re-dissolution. Furthermore, blends of PESu with lower molecular weight PLLA or PDLA (Mw of PLLA and PDLA are 152,000 and 124,000 g/mol, respectively), instead of the higher Mw of PDLLA (Mw of PDLLA=157,000 g/mol), are immiscible with UCST phase behavior, which are affected by molecular weights rather than the ratio of L/D monomer in the chemical structure of PLA.
Upon introducing PVPh into the binary PDLLA/PESu to form a ternary blend, the ternary PDLLA/PESu/PVPh blend system displays similar UCST phase behavior for partial compositions (PVPh 50wt% and PESu-rich) as PDLLA/PESu binary blends. The temperatures of homogenization for the PDLLA/PESu/PVPh are lower than that for the PDLLA/PESu blend.
Miscibility with a linear Tg-composition relationship was proven for blend of [P(BA-co-BT)] with PVPh. In comparison to the blends of PBA/PVPh and PBT/PVPh, the Kwei’s Tg model fitting on data for the P(BA-co-BT)/PVPh blend yielded a q value between those for the PBA/PVPh and PBT/PVPh blends (q=5 for PBT/PVPh; -82 for P(BA-co-BT)/PVPh; and -225 for PBA/PVPh blend). The q values suggest that the interaction strength in the P(BA-co-BT)/PVPh blend is not as strong as that in the PBT/PVPh blend. The FT-IR result revealed hydrogen-bonding interactions between the carbonyl groups in P(BA-co-BT) and phenol unit in PVPh. By judging from the wavenumber shifts of hydroxyl IR absorbance band, the H-bonding strength was estimated to be in a decreasing order: PBT/PVPh > P(BA-co-BT)/PVPh > PBA/PVPh. The comparison indicates that the PBA in the copolymer segments tend to defray the interaction in the P(BA-co-BT)/PVPh blends, leading to relatively weaker interaction between PBA and PVPh than that between PBT and PVPh.
The binary PBA/PBT blend was immiscible. Upon further mixing the PVPh into the immiscible binary blends of PBA and PBT, the ternary PBA/PBT/PVPh blends exhibits partial miscibility. The immiscibility in partial compositions of the ternary blends is resulted owing to the delta X effect (Xij-Xik), which may become significant and not negligible. PBA or PBT interacts similarly via H-bonding with the higher content of third component PVPh, leading to balanced interactions with minimal offset among the ternary constituents. The H-bonding interactions in the ternary PBA/PBT/PVPh blend are approximately similar in comparison with the same compositions of the binary P(BA-co-BT)/PVPh blend.
1. Huang, Y. Y.; Chen, H. L.; Hashimoto, T. Macromolecules, 36, 764, 2003.
2. Zhang, X. H.; Wang, Z. G.; Muthukumar M.; Han, C. C. Macromol. Rapid Commun., 26, 1285, 2005.
3. Andrienko, D.; Leon, S.; Delle Site, L.; Kremer, K. Macromolecules, 38, 5810, 2005.
4. Zhou, N.; Lodge, T. P.; Bates, F. S. J. Phys. Chem. B, 110, 3979, 2006.
5. Ho, R. M.; Chang, C. C.; Chung, Y. W.; Chiang, Y. W.; Wu, J. Y. Polymer, 44, 1459, 2003.
6. Hsu, J. Y.; Nandan, B.; Chen, M. C.; Chiu, F. C.; Chen, H. L. Polymer, 46, 11837, 2005.
7. He, A. H.; Han, C. C.; Yang, G. S. Polymer, 24, 8231, 2004.
8. Kim, Y. J.; Uyama, H.; Kobayashi, S. Macromolecules, 36, 5058, 2003.
9. Van Casteren, I. A.; Van Trier, R. A. M.; Goossens, J. G. P.; Meijer, H. E. H.; Lemstra, P. J. J. Polym. Sci. Part B Polym. Phy., 42, 2137, 2004.
10. Anantawaraskul, S.; Soares, J. B. P.; Wood-Adams, P. M. Macromol. Chem. Phys., 205, 771, 2004.
11. Bank, M.; Leffingwell, J.; Thies, C. Macromolecules, 6, 43, 1971.
12. Nishimoto, M.; Keskkula, H.; Paul, D. R. Polymer, 32, 272, 1991.
13. Walsh, D. J.; Higgins, J. S.; Maconndchie, A. “Polymer Blends and Mixtures”, Mijhoff Publishers, Boston, 1985.
14. Landry, C. J. T.; Yang, H.; Machell, J. S. Polymer, 32, 44, 1991.
15. Coleman, M. M.; Moskala, E. J. Polymer, 24, 251, 1983.
16. Varnell, D. F.; Moskala, E. J.; Painter, P. C.; Coleman, M. M. Polym. Eng. Sci. Phy. Ed., 23, 658, 1983.
17. Eisenberg, A.; Hara, M. Polym. Eng. Sci., 24, 1306, 1984.
18. Aubin, M.; Bedard, Y.; Morrissette, M. F.; Prud`homme, R. E. J. Polym. Sci. Phys. Ed., 21, 233, 1983.
19. Rodriguez-Parada, J. M.; Percec, V. Marcomolecules, 19, 55, 1986.
20. Lu, J. M.; Qiu, Z. B.; Yang, W. T. Polymer, 48, 4196, 2007.
21. Urayama, H.; Kanamori, T.; Kimura, Y. Macromol. Mater. Eng., 286, 705, 2001.
22. Urayama, H.; Moon, S. I.; Kimura, Y. Macromol. Mater. Eng., 288, 137, 2003.
23. Jorda, R.; Wilkes, G. L. Polym. Bull., 20, 479, 1988.
24. Tsuji, H.; Ikada, Y. Macromolecules, 25, 5719, 1992.
25. Tsuji, H.; Ikada, Y. J. Appl. Polym. Sci., 58, 1793, 1995.
26. Tsuji, H.; Ikada, Y. Polymer, 37, 595, 1996.
27. Tsuji, H.; Ikada, Y. J. Appl. Polym. Sci., 63, 855, 1997.
28. Tsuji, H.; Ikada, Y. Polymer, 40, 6699, 1999.
29. Yamane, H.; Sasai, K. Polymer, 44, 2569, 2003.
30. Tsuji, H.; Fukui, I. Polymer, 44, 2891, 2003.
31. Urayama, H.; Kanamori, T.; Fukushima, K.; Kimura, Y. Polymer, 44, 5635, 2003.
32. Blümm, E.; Owen, A. J. Polymer, 36, 4077, 1995.
33. Focarete, M. L.; Scandola, M.; Dobrzynski, P.; Kowalczuk, M. Macromolecules, 35, 8472, 2002.
34. Nijenhuis, A. J.; Colstee, E.; Grijpma, D. W.; Pennings, A. J. Polymer, 37, 5849, 1996.
35. Ferreira, B. M. P.; Zavaglia, C. A. C.; Duek, E. A. R. J.Appl. Polym. Sci., 86, 2898, 2002.
36. Tsuji, H.; Ikada, Y. J.Appl. Polym. Sci., 67, 405, 1998.
37. Tsuji, H.; Ishizaka, T. Int. J. Biol. Macromol., 29, 83, 2001.
38. Kuwabara, K.; Gan, Z.; Nakamura, T.; Abe, H.; Doi, Y. Biomacromolecules, 3, 390, 2002.
39. Cranston, E.; Kawada, J.; Raymond, S.; Morin, F. G.; Marchessault, R. H. Biomacromolecules, 4, 995, 2003.
40. Gan, Z.; Kuwabara, K.; Yamamoto, M.; Abe, H.; Doi, Y. Polym. Degrad. Stab., 83, 289, 2004.
41. Jiang, L.; Wolcott, M. P.; Zhang, J. Biomacromolecules, 7, 199, 2006.
42. Saeki, S.; Cowie, J. M. G.; McEwen, I. J. Polymer, 24, 60, 1983.
43. Cowie, J. M. G.; McEwen, I. J. Polymer, 26, 1662, 1985.
44. Widmaier, J. M.; Mignard, G. Eur. Polym. J., 23,989, 1987.
45. Lin, J. L.; Roe, R. J. Macromolecules, 20, 2168, 1987.
46. Schneider, H. A.; Dilger, P. Polym. Bull., 21, 265, 1989.
47. Rameau, A.; Gallot, Y.; Farnoux, P. M. B. Polymer, 30, 386, 1989.
48. Callaghan, T. A.; Paul, D. R. Macromolecules, 26, 2439, 1993.
49. Kuo, S. W.; Liu, W. P.; Chang F. C. Macromol. Chem. Phys., 206, 2307, 2005.
50. Scott, R. L. J. Chem. Phys., 17, 279, 1949.
51. Tompa, H. Trans. Faraday Soc., 45, 1140, 1949.
52. Kwei, T. K.; Frisch, H. L.; Radigan, W.; Vogel, S. Macromolecules, 10, 157, 1977.
53. Pomposo, J. A.; Cortazar, M.; Calahorra, E. Macromolecules, 27, 252, 1994.
54. Goh, S. H.; Siow, K. S. Thermochim. Acta, 105, 191, 1986.
55. Min, E. E.; Chiou, J. S.; Barlow, J. W.; Paul, D. R. Polymer, 28, 172, 1987.
56. Guo, Q. P. Eur. Polym. J., 32, 1409, 1996.
57. Kuo, S. W.; Chan, S. C.; Wu, H. D.; Chang, F. C. Macromolecules, 38, 4729, 2005.
58. Goh, S. H.; Ni, X. Polymer, 40, 5733, 1999.
59. Yau, S. N.; Woo, E. M. Macromol. Rapid. Commun., 17, 615, 1996.
60. Woo, E. M.; Tseng, Y. C. Macromol. Chem. Phys., 201, 1877, 2000.
61. Lee, S. C.; Woo, E. M. J. Polym. Sci. Part B Polym. Phy., 40, 747, 2002.
62. Liu, H. L.; Li, S. H.; Woo, E. M. J. Polym. Sci. Part B Polym. Phy., 44, 1147, 2006.
63. Chang, L. L.; Woo, E. M. Macromol. Chem. Phys., 202, 636, 2001.
64. Chang, L. L., Woo, E. M.; Liu, H. L. Polymer, 45, 6909, 2004.
65. Su, C. C.; Lin, J. H.; Woo, E. M. Polym. Int., 52, 1209, 2003.
66. Chou, I. C.; Wu, P. L.; Woo, E. M. Colloid Polym. Sci., 280, 410, 2002.
67. Woo, E. M.; Chou, I. C.; Lee, L. T. Polymer, 43, 4225, 2002.
68. Brannock, G. R.; Paul, D. R. Macromolecules, 23, 5240, 1990.
69. Pomposo, J. A.; Calahorra, E.; Eguiazabal, I.; Cortazar, M. Macromolecules, 26, 2104, 1993.
70. Jo, W. H.; Kwon, Y. K.; Kwon, I. H. Macromolecules, 24, 4708, 1991.
71. Vanneste, M.; Groeninckx, G. Polymer, 35, 1051, 1994.
72. Jeong, H. K.; Rooney, M. D.; David, J.; MacKnight, W. J.; Karasz, F. E.; Kajiyama, T. Polymer, 41, 6671, 2000.
73. Hosokawa, M.; Akiyama, S. Polym. J., 31, 13, 1999.
74. Moskala, E. J.; Varnell, D. F.; Coleman, C. C. Polymer, 26, 228, 1985.
75. Qin, C.; Pires, A. T. N.; Belfiore, L. A. Polym. Commun., 31, 177, 1990.
76. Goh, S. H.; Siow, K. S. Polym. Bull., 17, 453, 1987.
77. Belfiore, L. A.; Pires, A. T.; Qic C. Macromolecules, 24, 666, 1991.
78. Moskala, E. J.; Howe, S. E.; Painter, P. C., Coleman, M. M. Macromolecules, 17, 1671, 1984.
79. Belfiore, L. A.; Qin, C.; Ueda, E.; Pires, A. T. N. J. Polym. Sci. Part B Polym. Phys., 31, 409, 1993.
80. Qiu, Z. B.; Fujinami, S.; Komura, M.; Nakajima, K.; Ikehara, T.; Nishi, T. Polymer, 45, 4515, 2004.
81. Xing, P.; Dong, L.; An, Y.; Feng, Z.; Avella, M.; Martuscelli, E. Macromolecules, 30, 2726, 1997.
82. Belfiore, L. A.; Qin, C.; Ueda, E.; Pires, A. T. N. J. Polym. Sci. Polym. Phy. Ed., 31, 409, 1993.
83. Lee, L. T.; Woo, E. M. Polym. Int., 53, 1813, 2004.
84. Landry, C. J. T.; Massa, D. J.; Teegarden, D. M.; Landry, M. R.; Henrichs, P. M.; Colby, R. H,; Long, T. E. Macromolecules, 26, 6299, 1993.
85. Zhang, L. L.; Goh, S. H.; Lee, S. Y. J. Appl. Polym. Sci., 70, 811, 1998.
86. Meaurio, E.; Zuza, E.; Sarasua, J. R. Macromolecules, 38, 9221, 2005.
87. Zhang, Z. H.; Mo, Z. S.; Zhang, H. F.; Zhang, Y.; Na, T. H.; An, Y. X.; Wang, X. H.; Zhao, X. J. J. Polym. Sci. Part B Polym. Phy., 40, 1957, 2002.
88. Huang, H. L.; Goh, S. H.; Wee, A. T. S. Polymer, 43, 2861, 2002.
89. Lee, H. F.; Kuo, S. W.; Huang, C. F.; Lu, J. S.; Chan, S. C.; Wang, C. F.; Chang, F. C. Macromolecules, 39, 5458, 2006.
90. Lee, L. T.; Woo, E. M.; Hou, S. S.; Förster, S. Polymer, 47, 8350, 2006.
91. Urzua, M.; Leiva, A.; Alegria, L.; Gargallo, L.; Radic, D. Int. J. Polym. Mater., 56, 687, 2007.
92. Stoelting, J.; Karasz, F. E.; MacKnight, W. J. Polym. Eng. Sci., 10, 133, 1970.
93. Flory, P. J. J. Am. Chem. Soc., 86, 1833, 1965.
94. Flory, P. J. Discuss Faraday Soc., 49, 7, 1970.
95. Flory, P. J. “Principles of Polymer Chemistry”, Cornell University Press, Ithaca, New York, 1953.
96. Woo, E. M.; Barlow, J. W.; Paul, D. R. J Appl Polym Sci 1984, 29, 3837.
97. Harris, J. E.; Goh, S. H.; Paul, D. R.; Barlow, J. W. J. Appl. Polym. Sci., 27, 839, 1982.
98. Aubin, M.; Prud’homme, R. E. Macromolecules, 13, 365, 1980.
99. Zeman, L.; Patterson, D. Macromolecules, 5, 513, 1972.
100. Patterson, D. Polym. Eng. Sci., 22, 64, 1982.
101. Su, A. C.; Fried, J. R. Polym. Eng. Sci.,27, 1657, 1987.
102. Sperling, L. H. “Introduction to Physical Polymer Science 2nd ed.”, John Wiley & Sons, Inc., New York, 1992.
103. Hudson, S. D.; Davies, D. D.; Lovinger, A. J. Macromolecules, 25, 1759, 1992.
104. Kovacs, A. J. Adv. Polym. Sci., 3, 394, 1963.
105. Yau, S. N.; Woo, E. M. Macromolecules, 30, 3626, 1997.
106. Chen, H. L. Macromolecules, 28, 2845, 1995.
107. Aubin, M.; Prud`homme, R. E. Macromolecules, 21, 2945, 1988.
108. Aubin, M.; Prud`homme, R. E. Polym. Eng. Sci., 28, 1355, 1988.
109. Jutier, J. J.; Lemieux, E.; Prud`homme, R. E. J. Polym. Sci. Part B Polym. Phys., 26, 1313, 1988.
110. Pedrosa, P.; Pomposo, J. A.; Calahorra, E.; Cortazar, M. Macromolecules, 27, 102, 1994.
111. Cheung, Y. W.; Stein, R. S. Macromolecules, 27, 2512, 1994.
112. Olabishi, O.; Robeson, L. M.; Shaw, M. T. “Polymer-Polymer Miscibility”, Academic Press Inc., New York, 1979.
113. Woo, E. M.; Hou, S. S.; Huang, D. H.; Lee, L. T. Polymer, 46, 7425, 2005.
114. Woo, E. M.; Chiang, C. P. Polymer, 45, 8415, 2004.
115. Kuo, Y. H.; Woo, E. M.; Kuo, T. Y. Polym. J., 33, 920, 2001.
116. Sperling, L. H. “Introduction to Physical Polymer Science 3th ed.”, John Wiley & Sons, Inc., New York, 2001.
117. Braun, G.; Kovacs, A. J. “In Physics of Non-Crystalline Solids”, Prins, J. A. Ed., North-Holland, Amsterdam, 1965.
118. Minakov, A. A.; Mordvintsev, D. A.; Schick, C. Polymer, 45, 3755, 2004.
119. Papageorgiou, G. Z.; Bikiaris, D. N. Polymer, 46, 12081, 2005.
120. Papageorgiou, G. Z.; Bikiaris, D. N. J. Polym. Sci. Part B Polym. Phys., 44, 584, 2006.
121. Di`Lorenzo, M. L. Prog. Polym. Sci., 28, 663, 2003.
122. Alfonso, G. C.; Russel, T. P. Macromolecules, 19, 1143, 1986.
123. Martuscelli, E.; Silvestre, C.; Gismondi, C. Makromol. Chem., 186, 2161, 1985.
124. Amelino, L.; Martuscelli, E.; Sellitti, C.; Silvestre, C. Polymer, 31, 1051, 1990.
125. Martuscelli, E.; Sellitti, C.; Silvestre, C. Makromol. Chem. Rapid Commun., 6, 125, 1985.
126. Liu, L. Z.; Chu, B.; Penning, J. P.; Manley, R. S. J. Macromol. Sci. Phys. B, 37, 485, 1998.
127. Fischer, E. W.; Sterzel, H. J.; Wegner, G. Kolloid-Zeitschrift And Zeitschrift Fur Polymere, 251, 980, 1973.
128. Di`Lorenzo, M. L. J. Appl. Polym. Sci., 100, 3145, 2006.
129. Kwei, T. K. J. Polym. Sci. Polym. Lett. Ed., 22, 307, 1984.
130. Kuo, S. W.; Chang, F. C. Macromolecules, 34, 5224, 2001.
131. Gordon, M.; Taylor J. S. J. Appl. Chem., 2, 493, 1952.
132. Zhang, H.; Bhagwagar, D. E.; Graf, J. F.; Painter, P. C.; Coleman, M. M. Polymer, 35, 5379, 1994.