簡易檢索 / 詳目顯示

研究生: 林宜臻
Lin, Yi-Jhen
論文名稱: 應用於可展開機構之CRRC相關機構之分析
Analysis of CRRC Related Mechanisms Used in Deployable Mechanisms
指導教授: 黃金沺
Huang, Chin-Tien
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 80
中文關鍵詞: 可展開機構耦桿點曲線瞬時螺旋有限位移
外文關鍵詞: Deployable Mechanisms, Coupler Curve, Instantaneous Screw, Finite Displacement
相關次數: 點閱:103下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 可展開機構中的Jitterbug-Like 連桿組是模仿Jitterbug Motion的一種機構,其幾何特性已被歸納與定義,而CRRC相關機構則是應用於Jitterbug-Like連桿組,其機構為何可應用於可展開機構,兩者之間有何關聯性,值得我們深入探討;又CRRC相關機構在空間運動學之特性尚未被研究,故也將做為研究主題之一。
    探討機構之首要且最直覺的方法是耦桿點曲線,因其對於導引剛體位移和路徑衍生機構上扮演重要的角色。Röschel在探討多面體連桿組之運動分析,提到多面體連桿組的運動情形為Darboux Motion,因此本論文將CRRC相關機構透過耦桿點曲線分析,並驗證其耦桿軌跡與Darboux Motion之間存在的關聯性,且以Solidworks○R進行模擬,確定CRRC相關機構與Darboux Motion之關係,也探討當許多CRRC機構合成Jitterbug-Like 連桿組,其是否符合Darboux Motion。
    空間機構的運動可以用螺旋表示,Chasles定理說明空間中的剛體位移,均可表示為剛體沿一特定軸作平移和旋轉運動,當機構在瞬時運動過程中,所產生的螺旋即為瞬時螺旋,將所有瞬時螺旋集合而成則為瞬時螺旋曲面,藉由不同的坐標系觀察,又分為固定或運動瞬時螺旋曲面。本論文將探討CRRC相關機構之瞬時螺旋,並藉由不同的參數設定來分析,以歸納CRRC相關機構之瞬時螺旋特性。
    當機構在有限運動過程中,所產生的螺旋集合而成為有限螺旋矩陣,將所求得的有限位移矩陣結合矩陣秩數的概念,即可討論機構有限運動之線性性質。本論文探討CRRC相關機構之有限位移螺旋,並以數值模擬不同的參數設定,說明CRRC相關機構之有限位移為三系統,不具有線性性質,亦即有限位移矩陣不能以兩線性獨立螺旋為基底的螺旋系統來表示。
    關鍵詞:可展開機構,耦桿點曲線,瞬時螺旋,有限位移

    Jitterbug-like linkages have been employed in deployable mechanisms that have Jitterbug motion. The spatial CRRC linkage and its related linkages have been applied in Jitterbug-like linkages. This thesis aims at answering the following questions: why can these CRRC related linkages be applied in deployable mechanisms? What is the relationship between CRRC related linkages and Jitterbug-like linkages?
    The most direct way of studying the CRRC linkage is through the investigation of its coupler curve because the coupler curve plays an important role in guiding the coupler to conduct tasks, such as rigid-body guidance and path generation. Röschel described that the motion of polyhedral linkages is Darboux motion. The thesis first analyzes the coupler curve of CRRC related linkages and verifies the correlation between its coupler curve and the Darboux motion. Then we use Solidworks○R to simulate and verify the result.
    This thesis also uses screw theory to investigate the motion of the CRRC related linkages. Chasles theorem states that a spatial displacement can be represented by a rotation about an axis and a translation along the same axis. In instantaneous kinematics, the locus of all instantaneous screws forms a screw surface. By observing in different coordinate systems, this thesis determines the instantaneous screws of the CRRC related linkages by varing parameter settings and reports the instantaneous screw surfaces of CRRC related linkages.
    When studying the finite displacement of the CRRC related linkages, we use the ranks of screw matrices to determine the linear properties of finite screws. The thesis investigates the finite screws of CRRC related linkages and uses numerical examples to study the linear properties of the finite screws. The result shows that the ranks of finite displacement screw matrices of the CRRC related linkages are three and that they do not possess linear properties.
    Keywords:Deployable Mechanisms, Coupler Curve, Instantaneous Screw, Finite Displacement

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 符號表 X 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-3 研究動機與目的 4 1-4 本文架構 5 第二章 基本理論 6 2-1 可展開機構介紹 6 2-1-1 Jitterbug-Like連桿組 7 2-1-2 Homothetic Jitterbug-Like連桿組 9 2-1-3 Darboux Motion 11 2-2 D-H齊次轉換矩陣 13 2-3 蒲律克坐標表示式 16 2-3-1 線坐標 16 2-3-2 螺旋與螺旋系統 17 2-3-3 螺旋坐標位移矩陣 18 2-3-4 互逆螺旋 20 2-4 空間剛體位移螺旋 21 第三章 應用於可展開機構之空間CRRC機構 25 3-1 空間CRRC機構之運動分析 25 3-1-1 CRRC機構之幾何拘束條件 25 3-1-2 CRRC機構各接頭的螺旋坐標 26 3-1-3 CRRC機構之耦桿點曲線 29 3-2 CRRC機構與可展開機構之關係 34 3-3 空間CRRC機構瞬時螺旋 38 3-4 空間CRRC機構之有限位移 46 第四章 應用於可展開機構之空間PCRRC機構 50 4-1 空間PCRRC機構之運動分析 50 4-1-1 PCRRC機構之幾何拘束條件 50 4-1-2 PCRRC機構各接頭的螺旋坐標 51 4-1-3 PCRRC機構之耦桿點曲線 53 4-2 PCRRC機構與可展開機構之關係 58 4-3 空間PCRRC機構瞬時螺旋 62 4-4 空間PCRRC機構之有限位移 70 4-5 與CRRC機構之比較 72 第五章 結果與未來方向 74 5-1 結論 74 5-2 未來方向 75 參考文獻 77

    1.Ball, R. S., 1900, A Treatise on the Theory of Screws, England: Cambridge University Press.
    2.Bennett, G. T., 1903, “A New Mechanism,” Engineering, Vol. 76, pp. 777-778.
    3.Bottema, O. and Roth, B., 1979, Theoretical Kinematics, New York: Dover Publications, Inc.
    4.Bricad, R., 1897, “Mémoire sur la théorie de I’octaèdre articulé,” Journal de mathématiques pures et appliquées 5e série, Vol. 3, pp. 113-150.
    5.Chen, Y., You, Z., 2004, “Deployable Structures Based on the Bricard Linkages,” 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Matericals Conference, Palm Spring, California.
    6.Chen, Y., You, Z., 2005, “Mobile Assemblies Based on The Bennett Linkage,” Proc. of the Royal Society, 461, pp. 1229-1245.
    7.Cromwell, P. R., 1997, Polyhedra, Cambridge: Cambridge University Press.
    8.Denavit, J. and Hartenberg, R. S., 1955, “A Kinematic Notation for Lower Pair Mechanisms Based on Matrices,” ASME Journal of Applied Mechanics, Vol. 77, pp. 215-221.
    9.Department of Engineering – University of Cambridge, Deployable Structures Laboratory, http://www-civ.eng.cam.ac.uk/dsl, last access date: 29.05.2013.
    10.Escrig. F., Brebbia, C., 1996, Mobile and Rapidly Assembled Structures II, Southhampton: Computational Mechanics Publications.
    11.Fuller, R. B., 1975, Synergetics: Explorations in the Geometry of Thinking, New York: Macmillan.
    12.Fuller, R. B., Krausse, J., & Lichtenstein, C., 1999, Your Private Sky: R. Buckminster Fuller, The Art of Design Science. Baden: Lars Müller.
    13.Goldberg, M., 1942, “Polyhedral Linkages,” National Mathematics Magazine, Vol. 16-7, pp. 323-332.
    14.Hoberman, C., 1990, “Reversibly Expandable Doubly-Curved Truss Structure,” Patent No. 4,942,700, United States Patent.
    15.Hoberman, C., 1991, “Radial Expansion/Retraction Truss Structures,” Patent No. 5,024,031, United States Patent.
    16.Hoberman, C., 2001, “Reversibly Expandable Structures Having Polygon Links,” Patent No. 6,219,974, United States Patent.
    17.Hoberman, C., 2002, “Connections to Make Foldable Structures,” Patent No. 2,002,083,675, United States Patent.
    18.Hoberman, C., 2003, “Retractable Structures Comprised of Interlinked Panels,” Patent No. 6,739,098 B2, United States Patent.
    19.Hoberman, C., 2004, “Geared Expanding Structures,” Patent No. 2,004,134,157, United States Patent.
    20.Huang, C., 1997, ‘‘The Cylindroid Associated with Finite Motions of the Bennett Mechanism,’’ Joural of Mechanical Design, Trans. ASME, Vol. 119,
    pp. 521-524.
    21.Kiper, G., 2006, “New Design Methods For Polyhedral Linkages, Masters Disseration,” Dept. of Mechanical Engineering. Middle East Technical University, Ankara.
    22.Kiper, G., Sӧylemez, E., & Kişisel, A. U. Ӧ., 2007, “Polyhedral Linkages Synthesized Using Cardan Motion Along Radial Axes,” Proc. of the 12th IFToMM World Congress (CD), Besançon.
    23.Kiper, G., Sӧylemez, E., & Kişisel, A. U. Ӧ., 2008, “A Family of Deployable Polygons and Polyhedra,” Mechanism and Machine Theory, 43, pp.627-640.
    24.Kiper, G., 2010, “Some Properties of Jitterbug-like Polyhedral Linkages,” In: Pisla, D., Ceccarelli, M., Husty, M., & Corves, B. (Eds.): New Trends in Mechanism Science: Analysis and Design, Dordrecht: Springer, pp. 137-145.
    25.Kiper, G., 2011, “Design Methods For Planar and Spatial Deployable Structures,” Doctoral Disseration, Dept. of Mechanical Engineering. Middle East Technical University, Ankara.
    26.Kiper, G., Sӧylemez, E., 2011, “Some New Overconstrained Linkages Obtained From Homothetic Jitterbug-Like Linkages,” Proc. of the 13th IFToMM World Congress (CD), Guanajuato.
    27.Kokawa, T., 2001, Proposal of Retractable Loop-Dome, IASS Nagoya Symposium.
    28.Kovács, F., Tarnai, T., 1998, “Foldable Bar Structures,” 2nd International PhD Symposium in Civil Engineering, Budapest.
    29.Larochelle, P., Agius, A., 2005, “Interactive Visualization of the Coupler Surfaces of the Spatial 4C Mechanism,” ASME Journal of Mechanical Design, Vol. 127, No. 6, pp. 1122-1128.
    30.Plücker, J., 1865, “On a New Geometry of Space,” Philosophical Transactions of the Royal Society of London, Vol. 155, pp. 725-791.
    31.Parkin, I. A., 1992, “A Third Conformation with the Screw Systems: Finite Twist Displacements of a Directed Line and Point, ” Mechanism and Machine Theory, Vol. 27, pp. 177-188.
    32.Röschel, O., 1995, “Zwangläufig bewegliche Polyedermodelle I,” Mathematica Pannonica, 6, pp. 267-284.
    33.Röschel, O., 1996, “Zwangläufig bewegliche Polyedermodelle II,” Studia Scientiarum Mathematicarum Hungarica, 32, pp. 383-393.
    34.Röschel, O., 1996, “Linked Darboux Motions,” Mathematica Pannonica, 7, pp. 291-301.
    35.Röschel, O., 2001, “Zwangläufig bewegliche Polyedermodelle III,” Mathematica Pannonica, 12, pp. 55-68.
    36.Tsai, L. W., 1999, Robot Analysis: the Mechanics of Serial and Parrallel Manipulators, New York: John Wiley and Sons, Inc.
    37.Verheyen, H. F., 1989, “The Complete Set of Jitterbug Transformers and The Analysis of Their Motion,” The International Journal of Computers and Mathematics With Applications, Vol. 17, pp. 203-250.
    38.Wohlhatr, K., 1993, “Heureka Octahedron and Brussels Folding Cube as Special Cases of the Turning Tower,” Proc. of the 6th IFToMM International Symposium on Linkages and Computer Aided Design Methods, Bucharest, pp. 325-332.
    39.Wohlhatr, K., 1994, “The Screwtower, an Overconstrained Multi-Loop Spase Mechanism,” Proc. of the International Conference on Spatial Mechanisms and High-Class Mechanisms, Almaty, pp. 38-45.
    40.Wohlhatr, K., 1995, “New Overconstrained Spheroidal Linkages,” Proc. of the 9th World Congress on the Theory of the Mechines and Mechanisms, Milano, pp. 149-155.
    41.Wohlhatr, K., 2001, “Regular Polyhedral Linkages,” Proc. of the Second Workshop on Computational Kinematics, Seoul, Korea, 461, pp. 239-248.
    42.Wohlhatr, K., 2004, “Irregular Polyhedral Linkages,” Proc. of 11th World Congress in Mechanism and Machine Science, Tianjin, China, pp. 1083-1087.
    43.You, Z., Pellegrino, S., 1997, “Foldable Bar Structures, ” International Journal of Solid Structures, Vol. 34-15, pp. 1825-1844.
    44.蔣君宏,2006,平面機構之運動學與設計,二版,台北,高立圖書有限公司, 3-4頁。

    無法下載圖示 校內:2018-07-08公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE