| 研究生: |
周睮宸 Chou, Yu-Chen |
|---|---|
| 論文名稱: |
細長型高強度鋼筋混凝土結構牆之反覆載重行為 Cyclic Behavior of Slender RC Structural Walls Reinforced with High Strength Steel |
| 指導教授: |
洪崇展
Hung, Chung-Chan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 270 |
| 中文關鍵詞: | 鋼筋混凝土 、細長型結構牆 、高強度鋼筋 、反覆載重 、有限元素模型 |
| 外文關鍵詞: | Reinforced concrete, Slender structural walls, High strength steel, Cyclic loads, Finite element model |
| 相關次數: | 點閱:175 下載:35 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
根據ACI 318-19規範,使用於特殊結構牆腹版縱向撓曲鋼筋之降伏強度不得大於700 MPa以避免結構牆脆性破壞之發生,且目前使用高強度鋼筋於細長型結構牆的研究相當有限,本研究根據ACI 318-19規範設計四座高剪力需求之細長型結構牆進行測試,觀察其耐震行為,探討ACI 318-19規範是否適用於高強度材料細長型結構牆之設計,並根據沈笠筠 (2016) 與謝秉倫 (2017) 依照修正場理論 (MCFT) 建議之OpenSees模型驗證四座試體。
根據試驗結果,高強度鋼筋之較大降伏應變會延遲高剪力需求之細長型結構牆之非線性行為,使高剪力需求之結構牆趨於脆性破壞,並降低其塑鉸發展之能力約60 %,且無法提升其側向勁度與抗剪變形能力,僅能降低結構牆剪力滑移分量約47 %,故應避免使用高強度鋼筋於高剪力需求之細長型結構牆以避免脆性破壞之發生。提升混凝土強度約46 %能分別提升細長結構牆之側向勁度與總消散能量約11 %與28 %,並降低約45 %之剪力滑移分量,然而高強度混凝土於潛在破壞面產生時,此破壞面會快速發展,使結構牆側向勁度於試驗後期衰減較為快速,其勁度衰減率於位移比1.5 %後提高約32 %。此外,反覆載重與單向載重對於細長型結構牆之側向強度、勁度與消能能力之影響無明顯差異,惟反覆載重會使細長型結構牆之剪力滑移量增加約20 %。
因沈笠筠 (2016) 與謝秉倫 (2017) 以修正壓力場理論提出之分析模型為應用於高韌性鋼筋混凝土結構牆,基於試驗結果與參數研究,修正模型遲滯行為之參數,並以0.0075作為剪力模型混凝土拉應變之容許拉應變,使其能更準確預測細長型結構牆之反覆載重遲滯行為。其中剪力滑移彈簧若採用考慮破壞模式非剪力滑移破壞之結構牆達標稱撓曲強度後滑移位移量可能會較明顯提升現象之S2模型時,能較準確預測細長型結構牆之強度發展與剪力滑移發展。
There remain very few studies on the application of high-strength steel on slender structural walls. Four slender structural walls with an aspect ratio of 2.75 and high shear demand were tested under combined lateral and axial loads to investigate the impact of high-strength steel and concrete materials on the seismic behavior of slender RC walls. Then, verified the experimental results with finite element models based on Modified Compression Field Theory (MCFT).
According to experimental results, high-strength steel postponed the inelastic behavior of the slender walls, leading the slender walls with high shear demand to a brittle failure mode and limited the development of the plastic hinge. The high-strength steel had a little impact on the lateral stiffness and the shear deformation of the slender walls but decreased the shear sliding deformation component. Therefore, it should be avoided to apply high-strength steel on slender structural walls with high shear demand to prevent a brittle behavior. Increased the concrete strength about 46 percentage increased 11 percentage and 28 percentage of the lateral stiffness and total energy dissipation and decreased 45 percentage of shear sliding deformation component. Cyclic loads had an imperceptible influence on the lateral strength, stiffness and ability of energy dissipation of slender walls but increased the shear sliding deformation component.
Based on experiment and parameter study, finite element models founded on MCFT were recommended to predict the development of lateral strength and shear sliding deformation.
1. Aaleti, S., Brueggen, B. L., Johnson, B., French, C. E., & Sritharan, S. (2012). Cyclic response of reinforced concrete walls with different anchorage details: Experimental investigation. Journal of Structural Engineering, 139(7), 1181-1191.
2. ACI Committee. (2019). Building code requirements for structural concrete (ACI 318-19) and commentary (ACI 318R-19). American Concrete Institute.
3. Alarcon, C., Hube, M. A., & De la Llera, J. C. (2014). Effect of axial loads in the seismic behavior of reinforced concrete walls with unconfined wall boundaries. Engineering Structures, 73, 13-23.
4. American Concrete Institute (ACI). (2005). Acceptance criteria for moment frames based on structural testing and commentary (ACI 374.1-05).
5. Amran, Y. M., Alyousef, R., Rashid, R. S., Alabduljabbar, H., & Hung, C. C. (2018, September). Properties and applications of FRP in strengthening RC structures: A review. In Structures. Elsevier.
6. Athanasopoulou, A. (2010). Shear Strength and Drift Capacity of Reinforced Concrete and High-Performance Fiber Reinforced Concrete Low-Rise Walls Subjected to Displacement Reversals.
7. Beyer, K., Dazio, A., & Priestley, N. (2011). Shear deformations of slender reinforced concrete walls under seismic loading. ACI Structural Journal, 108(ARTICLE), 167-177.
8. Carrasquillo, R. L., Nilson, A. H., & Slate, F. O. (1981, May). Microcracking and behavior of high strength concrete subject to short-term loading. In Journal Proceedings (Vol. 78, No. 3, pp. 179-186).
9. Carrasquillo, R. L., Nilson, A. H., & Slate, F. O. (1981, May). Properties of High Strength Concrete Subject to Short-Term Loads. In Journal Proceedings (Vol. 78, No. 3, pp. 171-178).
10. Christidis, K. I., & Trezos, K. G. (2017). Experimental investigation of existing non-conforming RC shear walls. Engineering Structures, 140, 26-38.
11. Dazio, A., Beyer, K., & Bachmann, H. (2009). Quasi-static cyclic tests and plastic hinge analysis of RC structural walls. Engineering Structures, 31(7), 1556-1571.
12. DENG, M. K., LIANG, X. W., & Yang, K. (2008, October). Experimental study on seismic behavior of high performance concrete shear wall with new strategy of transverse confining stirrups. In Proceeding of the 14th World Conference on Earthquake Engineering, Xi’an University of Architecture & Technology, China (pp. 1-8).
13. Elwood, K. J., & Eberhard, M. O. (2009). Effective Stiffness of Reinforced Concrete Columns. ACI Structural Journal, 106(4).
14. Fenwick, R., & Bull, D. (2000). What is the stiffness of reinforced concrete walls. SESOC journal, 13(2), 23-32.
15. Fragomeni, S., & Venkatesan, S. (2010). Incorporating sustainable practice in mechanics and structures of materials. CRC Press.
16. Hiraishi, H. (1984, June). Evaluation of shear and flexural deformations of flexural type shear walls. In Proc. of 8th WCEE (Vol. 5).
17. Hsu, T. T., Slate, F. O., Sturman, G. M., & Winter, G. (1963, February). Microcracking of plain concrete and the shape of the stress-strain curve. In Journal Proceedings (Vol. 60, No. 2, pp. 209-224).
18. Hube, M. A., Marihuén, A., De la Llera, J. C., & Stojadinovic, B. (2014). Seismic behavior of slender reinforced concrete walls. Engineering Structures, 80, 377-388.
19. Hung, C. C., & El-Tawil, S. (2010). Hybrid Rotating/Fixed-Crack Model for High-Performance Fiber-Reinforced Cementitious Composites. ACI Materials Journal, 107(6).
20. Hung, C. C., & El-Tawil, S. (2011). Seismic behavior of a coupled wall system with HPFRC materials in critical regions. Journal of Structural Engineering, 137(12), pp.1499-1507.
21. Hung, C. C. (2012). Modified full operator hybrid simulation algorithm and its application to the seismic response simulation of a composite coupled wall system. Journal of Earthquake Engineering, 16(6), pp.759-776.
22. Hung, C. C., & Su, Y. F. (2013). On modeling coupling beams incorporating strain-hardening cement-based composites. Computers and Concrete, 12(4), pp.565-583.
23. Hung, C. C., Su, Y. F., & Yu, K. H. (2013). Modeling the shear hysteretic response for high performance fiber reinforced cementitious composites. Construction and Building Materials, 41, pp.37-48.
24. Hung, C. C., & Yen, W. M. (2014). Experimental evaluation of ductile fiber reinforced cement-based composite beams incorporating shape memory alloy bars. Procedia Engineering, 79, pp.506-512.
25. Hung, C. C., & Lu, W. T. (2015). Towards achieving the desired seismic performance for hybrid coupled structural walls. Earthquakes and Structures, 9(6), pp.1251-1272.
26. Hung, C. C., & Chen, Y. S. (2016). Innovative ECC jacketing for retrofitting shear-deficient RC members. Construction and Building Materials, 111, pp.408-418.
27. Hung, C. C., & Su, Y. F. (2016). Medium-term self-healing evaluation of Engineered Cementitious Composites with varying amounts of fly ash and exposure durations. Construction and Building Materials, 118, pp.194-203.
28. Hung, C. C., & Chueh, C. Y. (2016). Cyclic behavior of UHPFRC flexural members reinforced with high-strength steel rebar. Engineering Structures, 122, pp.108-120.
29. Hung, C. C., Yen, W. M., & Yu, K. H. (2016). Vulnerability and improvement of reinforced ECC flexural members under displacement reversals: experimental investigation and computational analysis. Construction and Building Materials, 107, pp.287-298.
30. Hung, C.-C., Su, Y.-F., Su, Y.-M. (2017). Mechanical properties and self-healing evaluation of strain-hardening cementitious composites with high volumes of hybrid pozzolan materials. Composites Part B: Engineering.
31. Hung, C. C., & Lu, W. T. (2017). A performance-based design method for coupled wall structures. Journal of Earthquake Engineering, 21(4), pp.579-603.
32. Hung, C. C., & Lu, W. T. (2017). Tall Hybrid Coupled Structural Walls: Seismic Behavior and Design Suggestions. International Journal of Civil Engineering, pp.1-16.
33. Hung, C. C., Li, H., & Chen, H. C. (2017). High-strength steel reinforced squat UHPFRC shear walls: Cyclic behavior and design implications. Engineering Structures, 141, pp.59-74.
34. Hung, C. C., Su, Y. F., & Hung, H. H. (2017). Impact of natural weathering on medium-term self-healing performance of fiber reinforced cementitious composites with intrinsic crack-width control capability. Cement and Concrete Composites, 80, pp.200-209.
35. Hung, C. C., Hu, F. Y., & Yen, C. H. (2018). Behavior of slender UHPC columns under eccentric loading. Engineering Structures, 174, 701-711.
36. Hung, C. C., & Hu, F. Y. (2018). Behavior of high-strength concrete slender columns strengthened with steel fibers under concentric axial loading. Construction and Building Materials, 175, 422-433.
37. Hung, C. C., & Lu, W. T. (2018). Tall hybrid coupled structural walls: seismic behavior and design suggestions. International Journal of Civil Engineering, 16(5), 567-582.
38. Hung, C. C., Lee, H. S., & Chan, S. N. (2019). Tension-stiffening effect in steel-reinforced UHPC composites: Constitutive model and effects of steel fibers, loading patterns, and rebar sizes. Composites Part B: Engineering, 158, 269-278.
39. Lefas, I. D., & Kotsovos, M. D. (1990). Strength and deformation characteristics of reinforced concrete walls under load reversals. Structural Journal, 87(6), 716-726.
40. Massone, L. M., & Wallace, J. W. (2004). Load-deformation responses of slender reinforced concrete walls. Structural Journal, 101(1), 103-113.
41. Massone, L. M., Orakcal, K., & Wallace, J. W. (2004, August). Flexural and shear responses in slender RC shear walls. In 13th World Conference On Earthquake Engineering Vancouver, BC, Canada August (pp. 1-6).
42. Mohammadhassani, M., Jumaat, M. Z., & Jameel, M. (2012). Experimental investigation to compare the modulus of rupture in high strength self compacting concrete deep beams and high strength concrete normal beams. Construction and Building Materials, 30, 265-273.
43. Naaman, A. E., & Reinhardt, H. W. (2006). Proposed classification of HPFRC composites based on their tensile response. Materials and structures, 39(5), 547-555.
44. Paulay, T., Priestley, M. J. N., & Synge, A. J. (1982, July). Ductility in earthquake resisting squat shearwalls. In Journal Proceedings (Vol. 79, No. 4, pp. 257-269).
45. Paulay T, Priestley M. Seismic design of reinforced concrete and masonry structures. INC USA: J. Wiley & Sons; 1992.
46. Pekelnicky, R., Engineers, S. D., Chris Poland, S. E., & Engineers, N. D. (2012). ASCE 41-13: Seismic Evaluation and Retrofit Rehabilitation of Existing Buildings. In Proceedings, SEAOC 2012 Convention.
47. Priestley, M. J. N., & Park, R. (1987). Strength and ductility of concrete bridge columns under seismic loading. Structural Journal, 84(1), 61-76.
48. Rashid, M. A., & Mansur, M. A. (2009). Considerations in producing high strength concrete. Journal of civil engineering (IEB), 37(1), 53-63.
49. Seo, M. S., Kim, H. S., Truong, G. T., & Choi, K. K. (2017). Seismic behaviors of thin slender structural walls reinforced with amorphous metallic fibers. Engineering Structures, 152, 102-115.
50. Shegay, A. V., Motter, C. J., Elwood, K. J., Henry, R. S., Lehman, D. E., & Lowes, L. N. (2018). Impact of axial load on the seismic response of rectangular walls. Journal of Structural Engineering, 144(8), 04018124.
51. Sittipunt, C., & Wood, S. L. (1995). Influence of web reinforcement on the cyclic response of structural walls. ACI Structural Journal, 92(6), pp.745-756.
52. Sritharan, S., Beyer, K., Henry, R. S., Chai, Y. H., Kowalsky, M., & Bull, D. (2014). Understanding poor seismic performance of concrete walls and design implications. Earthquake Spectra, 30(1), 307-334.
53. Tang, T. O., & Su, R. K. L. (2014). Shear and flexural stiffnesses of reinforced concrete shear walls subjected to cyclic loading. The Open Construction & Building Technology Journal.
54. Tseng, A. (2016). 中低型鋼筋混凝土結構牆性能化設計參數之研究. 成功大學土木工程學系學位論文。
55. Vecchio, F. (1981). Stress-strain characteristics of reinforced concrete in pure shear, final report. In IABSE colloquium on advanced mechanics of reinforced concrete (pp. 211-225). International Association for Bridge and Structural Engineering.
56. Vecchio, F. J., & Collins, M. P. (1986). The modified compression-field theory for reinforced concrete elements subjected to shear. ACI J., 83(2), 219-231.
57. Vecchio, F. J., & Collins, M. P. (1988). Predicting the response of reinforced concrete beams subjected to shear using modified compression field theory. ACI Structural Journal, 85(3), 258-268.
58. Vecchio, F. J., & Collins, M. P. (1993). Compression response of cracked reinforced concrete. Journal of structural engineering, 119(12), 3590-3610.
59. Wibowo, L. S., Cheng, M. Y., Huang, F. C., & Tai, T. Y. (2017). Effectiveness of High-Strength Hoops in High-Strength Flexural Members. ACI Structural Journal, 114(4).
60. Yüksel, S. B. (2017). Behavior of Reinforced Concrete Walls with Mesh Reinforcement Subjected to Cyclic Loading.
61. 曲哲, 初明進, (2009) , 轉角軟化航架模型與修正壓力場理論的比較研究, 工程力學, 第 26卷第三期, pp.36-42.
62. 沈笠筠. (2016). 低矮型超高性能纖維混凝土結構牆受反覆載重之分析模型. 成功大學土木工程學系學位論文.
63. 洪崇展, 曾柏庭, 游文吉, & 黃忠良. (2011). 使用高性能纖維混凝土於耦合結構牆以提升地震行為表現之有效性. 結構工程, 26(4), pp.3-16.
64. 洪崇展, & 盧威廷. (2014). 複合耦合結構牆抗震系統之設計與非線性側推分析. 結構工程, 29(3), pp.40-58.
65. 洪崇展, 戴艾珍, 顏誠皜, 溫國威, & 張庭維. (2017). 新世代多功能性混凝土材料-高性能纖維混凝土. 土木水利, 44(1), pp.33-51.
66. 洪崇展, 盧威廷, 鄭宇翔. (2017). 耦合結構牆性能化抗震設計法. 結構工程, 32(1), pp.49-70.
67. 陳弘錡. (2015). 高強度鋼筋加勁超高性能纖維混凝土低矮型剪力牆之反覆載重行為. 中央大學土木工程學系學位論文.
68. 謝秉倫. (2017). 高強度鋼筋加勁超高性能纖維混凝土低矮型剪力牆之剪力行為研究. 成功大學土木工程學系學位論文.
69. 蕭輔沛, 鍾立來, 葉勇凱, 簡文郁, 沈文成, 邱聰智, 周德光, 趙宜峰, 翁樸文, 楊耀昇, 涂耀賢, 柴駿甫, 黃世建. (2013) .「校舍結構耐震評估與補強技術手冊(第三版)」.國家地震工程研究中心研究報告,NCREE-13-023.台北. 299頁.