| 研究生: |
衣德成 Yi, Techeng |
|---|---|
| 論文名稱: |
車籠埔斷層帶組構特性與膨潤石-伊利石礦物相轉變之研究 The Study of the Fault Zone Fabric and Smectite-Illite Transition in the Chelungpu Fault Zone |
| 指導教授: |
林慶偉
Lin, Ching-weei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | 礦物相轉變 、伊利石 、膨潤石 、組構 、斷層帶 |
| 外文關鍵詞: | fault zone, smectite, illite, fabric |
| 相關次數: | 點閱:66 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的目的在於探討膨潤石-伊利石礦物相轉變與觸發斷層活動之機制的關係,我們選擇大尖山斷層(即車籠埔斷層南段)的兩處露頭—桶頭剖面與加走寮溪剖面,透過中視尺度斷層帶調查與測繪,配合中視及微視尺度斷層帶組構之觀察及利用X光繞射分析量測斷層帶內黏土礦物含量之變化。
研究結果顯示,大尖山斷層造成斷層上盤的地形高聳而陡峭,斷層上盤的線型分佈的範圍約2公里寬,其間發育眾多的崩塌地,提供大量鬆散的土石材料。在370公尺寬的桶頭剖面以及350公尺寬的加走寮溪剖面中,各辨識出14條及4條剪裂帶分佈於斷層帶中,部分剪裂帶之核心存在類似軟質沈積物變形之脫水構造。本研究在桶頭剖面共採取了68個標本,加走寮溪剖面共採取22個標本,黏土礦物組成及膨潤石╱伊利石混層礦物之混層比分析結果顯示,隨著岩體剪裂程度的提高,伊利石含量提高,膨潤石含量降低,綠泥石含量略微提高。
將含脫水構造及斷層泥之標本與黏土礦物X光繞射分析結果比對後,發現其黏土礦物組成與膨潤石-伊利石礦物相轉變之趨勢一致,顯示斷層作用有助於膨潤石-伊利石礦物相之轉變,因此提出斷層帶發育模式:斷層活動使膨潤石脫水產生超額孔隙壓,斷層活動後,新生成的伊利石使斷層帶岩體強度增加,因此下一次斷層活動便在它處產生新剪裂帶,如此週而復始,便形成目前所見剪裂帶遍佈的斷層帶。
none
李彥良,921集集地震地震斷層研究,國立成功大學地球科學研究所碩士論文,2001。
林泗濱,恆春半島南端沈積岩中之黏土礦物,行政院國家科學委員會專題研究計畫成果報告 NSC-75-0202-M002-03,1997。
林泗濱、陳正宏,八十三年度台北盆地地下地質與工程環境綜合調查研究,經濟部中央地質調查所報告第83-043號,1994。
許宏生,台東縣海岸山脈黏土礦之組成與性質,國立台灣大學地質學研究所碩士論文,1985。
陳光祖,海岸山脈利吉層黏土礦物之研究,國立台灣大學地質學研究所碩士論文,1985。
陳振華,台東縣東河鄉隆昌村黏土礦之研究,國立台灣大學地質學研究所碩士論文,1983。
黃鑑水、劉桓吉、張憲卿,台灣南部觸口斷層之地質調查與探勘研究(一),行政院國家科學委員會專題研究計畫成果報告 NSC-81-0414-P-047-01B,1992。
黃鑑水、劉桓吉、張憲卿,台灣南部觸口斷層之地質調查與探勘研究(二),行政院國家科學委員會專題研究計畫成果報告 NSC-82-0414-P-047-001B,1993。
楊耿明、黃旭燦、吳榮章、李民、丁信修、梅文威,大尖山—觸口逆衝斷層系統的地下構造及演化特性,中國地質學會90年年會摘要,82-84頁,2001。
趙杏媛、張有瑜,黏土礦物與黏土礦物分析,海洋出版社,中國北京,341頁,1990
劉桓吉、李錦發,五萬分之一台灣地質圖雲林圖幅說明書,經濟部中央地質調查所,47頁,1998。
Allmendinger, R.W., Stereonet v.1.1.6 & FaultKin v.1.2.2 (shareware software, ftp://www.geo.cornell.edu/pub/rwa), Dept. of Geological Sciences, Cornell University, Ithaca, 2002.
Ahn, J.H. and Peacor, D.R., Transmission and analytical electron microscopy of the smectite-to-illite transition, Clays and Clay Minerals, Vol. 34, No.2, p. 165-179, 1986.
Biscaye, P.E., Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans, Geological Society of America Bulletin , Vol. 76, p. 803-832, 1965.
Brown, K.M. and Ransom, B., Porosity corrections for smectite-rich sediments: Impact on studies if compaction, fluid generation, and tectonic history, Geology, Vol. 24, No. 9, p. 843-846, 1996.
Bruce, C.H., Smectite dehydration - Its relation to structural development and hydrocarbon accumulation in Northern Gulf if Mexico Basin, The American Association of Petroleum Geologists Bulletin, Vol. 68, No. 6, p. 673-683, 1984.
Caine, J.S., Evans, J.P., Forster, C.B., Fault zone architecture and permeability structure, Geology, Vol. 24, No. 11, p. 1025-1028, 1996.
Chen, P.Y., Clay minerals distribution in the sea-bottom sediments neighbouring Taiwan island and northern South China Sea, Acta Oceanographica Taiwanica, Science reports of the National Taiwan University, No. 3, p. 25-64, 1973.
Chester, F.M., Evans, J.P., Biedel, R.L., Internal structure and weakening mechanisms of the San Andreas Fault, Journal of Geophysical research, Vol. 98, No. B1, p. 771-786, 1993.
Colten-Bradley, V.A., Role of pressure in smectite dehydration - Effects on geopressure and smectite-to-illite tranformation, The American Association of Petroleum Geologists Bulletin, Vol. 71, No. 11, p. 1414-1427, 1987.
Davis, G.H. and Reynolds, S.J., Structural Geology of Rocks and Regions, John Wiley & Sons, INC., U.S.A., 776p., 1996.
Fitts, T.G. and Brown, K.M., Stress-induced smectite dehydration: ramifications for pattern of freshening and fluid explusion in the N. Barbados accretionary wedge, Earth and Planetary Science Letters, Vol. 172, p. 179-197, 1999.
Freed, R.L. and Peacor, D.R., Geopressured shale and sealing effect of smectite to illite transition, The American Association of Petroleum Geologists Bulletin, Vol. 73, No. 10, p. 1223-1232, 1989.
Handin, J., Hager, R.V., Jr., Friedman, M., Feather, J.N., Experimental deformation of sedimentary rocks under confining pressure: Pore pressure tests, Am. Assoc. Petrol. Geol. Bull., Vol. 47, p.717-755, 1963.
Hickman, S., Sibson, R., Bruhn, R., Introduction to special section: Mechanical involvement of fluids in faulting, Journal of Geophysical research, Vol. 100, No. B7, p. 12831-12840, 1995.
Hower, J., Eslinger, E.V., Hower, M.E., Perry, E.A., Mechanism of burial metamorphism of argillaceous sediment 1: Mineralogical and chemical evidence. , Geological Society of America Bulletin, Vol. 87, p. 725-737, 1976.
Huang, W.L. Bassett, W.A. Wu, T.C., Dehydration and hydration of montmorillonite at elevated temperatures and pressures monitored using synchrotron radiation, American Mineralogist, Vol. 79, p. 683-691, 1994.
Hubbert, M.K. and Ruby, W.W., Role of fluid pressure in the mechanics of overthrust faulting. I: Mechanics of fluid-filled porous solids and its applicaiton to overthrust, Geol. Soc. Am. Bull., Vol. 70, p. 115-116, 1959.
Inoue, A., Bouchet, A., Velde, B., Meunier, A., Convenient technique for estimating smectite layer percentage in randomly interstratified illite/smectite minerals, Clays and Clay minerals, Vol. 37, No. 3, p. 227-234, 1989.
Jamison, W.R., Laramide deformation of the Wingate Sandstone, Colorado National Monument: A study of cataclastic flow: Ph.D. dissert., Texas A&M Univ., U.S.A., 170p., 1979.
Johns, W. D., Grim, R. E. and Bradley, W. F., Quantitative estimations of clay minerals by diffraction methods, Journal of Sedimentary Petrology, Vol. 22, No. 4, p. 242-251, 1954.
Katsutoshi, Tomita, Hidewo, Takahashi, and Tajashi, Watanabe., Quantification curves for mica/smectite interstratifications by X-ray powder diffraction, Clays and Clay Minerals, Vol. 36, p. 258-262, 1988.
Koster, van Groos A.F. and Guggenheim, S., The effect of pressure on the dehydration reaction of interlayer water in Na-montmorillonite (SWy-1), American Mineralogist, Vol. 69, p. 872-879, 1984.
Lin, C.W., Lai, W.C., Chung, K.J., Microfaults in high-porosity sandstones: An example from the Nanshilung sandstone in the Chishan area, Journal of the Geological Society of China, Vol. 38, No. 1, p. 49-64, 1995.
Mitra, G., Ismat, Z., Microfracturing associated with reactived fault zones and shear zones: what can it tell us about deformation history?, The Nature and Tectonic Significance of Fault Zone Weakening, Geological Society London, Special Publication, 186, p. 342, 2001.
Moore, D.M. and Reynolds, R. C., Jr., X-Ray Diffraction and the Identification and Analysis of Clay Minerals, Oxford University Press, New York, p. 332, 1989.
Moore, J.C., Shipley, T.H., Goldberg D., Ogawa Y., Filice F., Fisher A., Jurado M.J., Moore G. F., Rabaute A., Yin H., Zwart G., Bruckmann W., Henry P., Ashi J., Blum P., Meyer A., Housen B., Kastner M., Labaume P., Laier T., Leitch E.C., Maltman A. J., Peacock S., Steiger T.H., Tobin H.J., Underwood M.B., Xu Y., Zheng Y., Abnormal fluid pressures and fault-zone dilation in the Barbados accretionary prism: Evidence from logging while drilling, Geology, Vol. 23, No. 7, p. 605-608, 1995.
Moore, J.C., Tectonics and hydrogeology of accretionary prisms: role of the decollement zone, Journal of Structural Geology, Vol. 11, No. 1/2, p. 95-106, 1989.
Perry, E.D. and Hower, J., Burial diagenesis in Gulf Coast pelitic sediments, Clays and Clay Minerals, Vol. 18, p. 165-177, 1970.
Price, R.A., The mechanical paradox of large overthrust, Geol. Soc. Am. Bull., Vol.100, p. 1898-1908, 1988.
Rettke, R. C., Probable burial diagenetic and provenance effects on Dakota Group clay mineralogy, Denver Basin, Journal of Sedimentary Petrology, Vol. 51, No. 2, p. 0541-0551, 1981.
Reynold, R.C., Jr., and Hower, J., The nature of interlayering in mixed-layer illite-montmorillonite, Clays and Clay Minerals, Vol. 18, p. 25-36, 1970.
Saffer, D.M. and Marone, C., Comparison of smectite- and illite-rich gouge frictional properties: application to the updip limit of the seismogenic zone along subduction megathrusts, submitted to EPSL, 2003.
Secor, D.T., Jr., Role of fluid pressure in jointing, Am. Jour. Sci., Vol. 163, p. 633-646, 1965.
Sibson, R.H., Fault rocks and fault mechanisms, Journal of the Geological Society of London, Vol. 133, p. 191-213, 1977.
Srodon, J., Precise identification of illite/smectite interstratifications by powder X-ray diffraction. , Clays and Clay Minerals, Vol. 28, No. 6, p. 401-411, 1980.
Srodon, J., X-ray identification of randomly interstratified illite-smectite in mixtures with discrete illite, Clay Minerals, Vol. 16, p. 297-304, 1981.
Srodon, J., Nature of mixed-layer clays and mechanisms of their formation and alteration, Annual Review of Earth and Planetary Sciences, Vol. 27, p. 19-53, 1999.
Vrolijk P., On the mechanical role of smectite in subduction zones, Geology, Vol. 18, p. 703-707, 1990.
Vrolijk P. and van der Pluijm, B. A., Clay gouge, Journal of Structural Geology, Vol. 21, p. 1039-1048, 1999.
Weaver, C.E., The distribution and identification of mixed-layer clays in sedimentary rocks, American Mineralogist, Vol. 41, p. 202-221, 1956.
Weir, A.H., Ormerod, E. C., El Mansey, I. M. I., Clay Mineralogy of sediments of the western Nile Delta, Clay Minerals, Vol. 10, p. 369-386, 1975.