簡易檢索 / 詳目顯示

研究生: 張琬婷
Chang, Wan-Ting
論文名稱: 奈米CuAg@C/石墨烯電極應用於電容去離子海水淡化與抗菌
Capacitive deionization and disinfection of seawater effected by nano CuAg@C graphene electrodes
指導教授: 王鴻博
Wang, H. Paul
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 121
中文關鍵詞: 海水淡化電容去離子奈米核殼材料抗菌
外文關鍵詞: Desalination, Capacitive deionization, Core-shell, Disinfection
相關次數: 點閱:141下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全球水資源因經濟與工業快速發展,而加劇惡化,乾淨飲用水取得更加困難。地球水資源分佈以97%為海水,因此海水淡化技術成為最重要之水資源之一。海水淡化技術中,電容去離子(capacitive deionization (CDI))是一種電化學方法,具低成本、低耗能、低二次污染等優勢,可應用於去除鹽水中之鹽分、工業用水軟化以及重金屬污染之處理。CDI基本原理是在兩電極之間加入電場,使水中帶有電荷之離子吸附於電極表面形成之電雙層,達到去除水中離子之目的,因此,CDI電極材料之導電性、比表面積及碳材結構等成為關鍵特性。
    石墨烯是碳原子sp2軌域組成之六角形晶格結構,具良好導電性,因此將其應用於CDI之電極材料,增加水中離子吸附效率。並以電子顯微鏡、穿透式電子顯微鏡、傅立葉轉換紅外光譜(FTIR)、拉曼光譜、比表面積分析儀(BET)、循環伏安等方法進行特性分析。藉由醣化合物(β-cyclodextrin)螯合形成Cu2+-CD-Ag+錯合物,碳化後生成Cu-Ag@C核殼(core-shell)奈米材料,並以同步輻射光源XANES分析Cu-Ag@C之氧化物比例分佈;另也以小角度X光散射儀(SAXS)分析Cu-Ag@C之奈米粒徑約40~60 nm。
    以環境友善之還原劑HMTA,將氧化石墨烯(graphene oxide (GO))還原生成石墨烯(graphene (rGO))。為提升電極導電性與抗菌能力,添加Cu-Ag@C核殼奈米材料製備新型石墨烯電極,應用於CDI進行海水中NaCl之吸附去除實驗。實驗結果顯示添加奈米Cu-Ag@C可明顯提升電極之導電性,而且產生較多碳材之孔洞結構。另外,對於電極抗菌能力,實驗結果顯示大腸桿菌減少,加入奈米核殼材料,可提升電極導電性,也使其具有抗菌之能力。本CDI海水淡化技術研究成果顯示,使用Cu-Ag@C奈米核殼材料,使電極兼具備海水淡化與抗菌之效能。

    The total water storage on earth contains 97% of seawater. Seawater is, therefore, becoming the main water resource for drinking water in the near future. Capacitive deionization (CDI) for desalination has advantages of low energy consumption, economical attraction and environmental friendly, which can be applied in removing the salt from brine, industrial water softening, and groundwater metal removal. During CDI, an electric field is applied between two electrodes. The opposed ions are forced toward the electrical double layer (EDL) formed on the electrode surfaces.
    Graphene (rGO) having unique thermal, electronic and mechanical properties can be used for the CDI electrodes. In this work, the core-shell nanoparticles dispersed on rGO were prepared and characterized by SEM, TEM, FTIR, Raman, BET surface area analysis, and cyclic voltammetry. The nano core CuAg encapsulated in carbon-shell having the particles size of 10-15 nm were also determined by small angle X-ray scattering (SAXS) spectroscopy. CuO and Cu2O in Cu-Ag@C are observed by component-fitted synchrotron X-ray adsorption near edge structure (XANES) spectroscopy.
    The hydrophilic GO was reduced to the hydrophobic rGO with hexamethylene tetramine which is a nontoxic reductant. The specific capacitances of rGO and Cu-Ag@C/rGO are 493 and 716 F/g, respectively. Using the Cu-Ag@C/rGO electrodes for CDI, the NaCl removal efficiency is 35 %, and the regeneration can be completed in a very short time (5 min). Additionally, the disinfection efficiency is as high as 90% in the 4-h contact time. It is clear that the Cu-Ag@C/rGO electrodes have a desirable desalination performance with very high disinfection ability in the CDI process.

    摘要 I ABSTRACT III 誌謝 V CONTENT VI TABLES VIII FIGURES IX CHAPTER 1 INTRODUCTION 1 CHAPTER 2 LITERATURE STUDIES 5 2.1 Desalination technologies 5 2.2 Capacitive deionization 14 2.2.1 Theory of the electrical double layer 15 2.2.2 Electrode materials 16 2.3 Antibacterial mechanisms of nanoparticles materials 24 2.3.1 Nano silver 24 2.3.2 Nano copper 25 2.3.3 Nano zinc oxide 25 2.3.4 Graphene and Grahene oxide 25 2.4 Antibacterial methods 29 CHAPTER 3 EXPERIMENTAL METHODS 33 3.1 Experimental procedures 33 3.2 Preparation of Core-shell Nanoparticles 35 3.3 Preparation of Graphene Oxide (GO) 35 3.4 Preparation of Graphene (rGO) 35 3.5 Preparation of Electrodes 36 3.6 Antibacterial Experiments 36 3.7 Electrosorption Experiments 37 3.8 Characterization 40 3.8.1 XRD 40 3.8.2 FE-SEM/TEM 40 3.8.3 FTIR 40 3.8.4 XANES 41 3.8.5 SAXS 41 3.8.6 Cyclic Voltammetry 41 3.8.7 Raman 42 CHAPTER 4 RESULTS AND DISCUSSION 46 4.1 Preparation of Ag@C/rGO for CDI of seawater 46 4.2 Capacitive desalination and disinfection using Ag@C/rGO and Cu@C/rGO electrodes 62 4.3 Capacitive deionization and disinfection effected by   Cu-Ag@C electrodes. 79 CHAPTER 5 CONCLUSIONS AND SUGGESTIONS 98 REFERENCE 101 APPENDIX 116 A. Disk diffusion test with Haloarula vallismortis 116 B. The CV-curve for GO 120

    1. Aghigh, A., V. Alizadeh, H.Y. Wong, M.S. Islam, N. Amin, and M. Zaman, (2015), “Recent advances in utilization of graphene for filtration and desalination of water: A review”, Desalination, 365(0), pp.389-397.
    2. Ajayan, P. and O. Zhou, Applications of carbon nanotubes, in Carbon Nanotubes, M. Dresselhaus, G. Dresselhaus, and P. Avouris, Editors. 2001, Springer Berlin Heidelberg. p. 391-425.
    3. Akhavan, O. and E. Ghaderi, (2010), “Toxicity of graphene and graphene oxide nanowalls against bacteria”, ACS Nano, 4(10), pp.5731-5736.
    4. Anderson, M.A., A.L. Cudero, and J. Palma, (2010), “Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete?”, Electrochimica Acta, 55(12), pp.3845-3856.
    5. Bai, Y., Z.-H. Huang, X.-L. Yu, and F. Kang, (2014), “Graphene oxide-embedded porous carbon nanofiber webs by electrospinning for capacitive deionization”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 444(0), pp.153-158.
    6. Bao, Q., D. Zhang, and P. Qi, (2011), “Synthesis and characterization of silver nanoparticle and graphene oxide nanosheet composites as a bactericidal agent for water disinfection”, J Colloid Interface Sci, 360(2), pp.463-70.
    7. Bharadwaj, R., D. Singh, and A. Mahapatra, (2008), “Seawater desalination technologies”, International Journal of Nuclear Desalination, 3(2), pp.151-159.
    8. Chang, L.M., X.Y. Duan, and W. Liu, (2011), “Preparation and electrosorption desalination performance of activated carbon electrode with titania”, Desalination, 270(1–3), pp.285-290.
    9. Chen, J., H. Peng, X. Wang, F. Shao, Z. Yuan, and H. Han, (2014), “Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation”, Nanoscale, 6(3), pp.1879-1889.
    10. Chen, Q., L. Zhang, and G. Chen, (2011), “Facile preparation of graphene-copper nanoparticle composite by in situ chemical reduction for electrochemical sensing of carbohydrates”, Analytical Chemistry, 84(1), pp.171-178.
    11. Chiu, Y., C. Huang, F. Chang, H. Kang, and H.P. Wang, (2011), “Recovery of copper from a wastewater for preparation of Cu nanoparticles”, Sustainable Environment Research, 21(4), pp.279-282.
    12. Choi, J.-H., (2010), “Fabrication of a carbon electrode using activated carbon powder and application to the capacitive deionization process”, Separation and Purification Technology, 70(3), pp.362-366.
    13. Chong, P.P., D. van Duin, A. Bangdiwala, A. Ivanova, A. Kerr, D.J. Weber, P.H. Gilligan, T. Khan, and T.C. Shea, (2015), “Impact of daptomycin minimum inhibitory concentration (MIC) on outcomes of patients with hematologic malignancies and hematopoietic stem cell transplant (HSCT) recipients with vancomycin-resistant enterococci (VRE) bloodstream infection (BSI)”, Biology of Blood and Marrow Transplantation, 2(21), pp.S277.
    14. Courrol, L.C., F.R. de Oliveira Silva, and L. Gomes, (2007), “A simple method to synthesize silver nanoparticles by photo-reduction”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 305(1–3), pp.54-57.
    15. Cushnie, T.T. and A.J. Lamb, (2005), “Antimicrobial activity of flavonoids”, International journal of antimicrobial agents, 26(5), pp.343-356.
    16. Daer, S., J. Kharraz, A. Giwa, and S.W. Hasan, (2015), “Recent applications of nanomaterials in water desalination: A critical review and future opportunities”, Desalination, 367(0), pp.37-48.
    17. Das, G., R.D. Kalita, P. Gogoi, A.K. Buragohain, and N. Karak, (2014), “Antibacterial activities of copper nanoparticle-decorated organically modified montmorillonite/epoxy nanocomposites”, Applied Clay Science, 90(0), pp.18-26.
    18. Das, M.R., R.K. Sarma, R. Saikia, V.S. Kale, M.V. Shelke, and P. Sengupta, (2011), “Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity”, Colloids and Surfaces B: Biointerfaces, 83(1), pp.16-22.
    19. Das, S., S. Sinha, M. Suar, S.-I. Yun, A. Mishra, and S.K. Tripathy, (2015), “Solar-photocatalytic disinfection of Vibrio cholerae by using Ag@ ZnO core–shell structure nanocomposites”, Journal of Photochemistry and Photobiology B: Biology, 142(0)pp.68-76.
    20. Dastjerdi, R. and M. Montazer, (2010), “A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties”, Colloids and Surfaces B: Biointerfaces, 79(1), pp.5-18.
    21. Davar, F., A. Majedi, and A. Mirzaei, (2015), “Green synthesis of ZnO nanoparticles and its application in the degradation of some dyes”, Journal of the American Ceramic Society,
    22. Duan, F., Y. Li, H. Cao, Y. Wang, J.C. Crittenden, and Y. Zhang, (2015), “Activated carbon electrodes: Electrochemical oxidation coupled with desalination for wastewater treatment”, Chemosphere, 125(0), pp.205-211.
    23. El-Deen, A.G., N.A.M. Barakat, K.A. Khalil, M. Motlak, and H. Yong Kim, (2014), “Graphene/SnO2 nanocomposite as an effective electrode material for saline water desalination using capacitive deionization”, Ceramics International, 40(9, Part B), pp.14627-14634.
    24. El-Ghonemy, A., (2012), “Water desalination systems powered by renewable energy sources, Review”, Renewable and Sustainable Energy Reviews, 16(3), pp.1537-1556.
    25. El-Ghonemy, A.M.K., (2013), “Water desalination systems powered by renewable energy sources, Review”, Renewable and Sustainable Energy Reviews, 24(0), pp.629.
    26. ESTPURE, (2010), “A water reclaimed water plant upgrade project in Ningbo, Zhejiang”,
    27. Faria, A.F.d., D.S.T. Martinez, S.M.M. Meira, A.C.M.d. Moraes, A. Brandelli, A.G.S. Filho, and O.L. Alves, “Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets”, Colloids and Surfaces B: Biointerfaces.
    28. Farmer, J.C., D.V. Fix, G.V. Mack, R.W. Pekala, and J.F. Poco, (1996), “Capacitive deionization of NH4ClO4 solutions with carbon aerogel electrodes”, Journal of Applied Electrochemistry, 26(10), pp.1007-1018.
    29. Feng, C., C.-H. Hou, S. Chen, and C.-P. Yu, (2013), “A microbial fuel cell driven capacitive deionization technology for removal of low level dissolved ions”, Chemosphere, 91(5), pp.623-628.
    30. Fleming, A., (1929), “On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae”, British journal of experimental pathology, 10(3), pp.226.
    31. Foster, W. and A. Raoult, (1974), “Early descriptions of antibiosis”, The Journal of the Royal College of General Practitioners, 24(149), pp.889.
    32. García-Quismondo, E., C. Santos, J. Lado, J. Palma, and M.A. Anderson, (2013), “Optimizing the energy efficiency of capacitive deionization reactors working under real-world conditions”, Environmental Science & Technology, 47(20), pp.11866-11872.
    33. Garcia-Rodriguez, L., (2002), “Seawater desalination driven by renewable energies: a review”, Desalination, 143(2), pp.103-113.
    34. Geim, A.K., (2009), “Graphene: status and prospects”, Science, 324(5934), pp.1530-1534.
    35. Gilman, R.F. and A.M. Johnson, Electrodialysis demineralization apparatus. 1972, Google Patents.
    36. Gräslund, S. and B.-E. Bengtsson, (2001), “Chemicals and biological products used in south-east Asian shrimp farming, and their potential impact on the environment—a review”, Science of the Total Environment, 280(1), pp.93-131.
    37. Guo, H.-L., X.-F. Wang, Q.-Y. Qian, F.-B. Wang, and X.-H. Xia, (2009), “A green approach to the synthesis of graphene nanosheets”, ACS Nano, 3(9), pp.2653-2659.
    38. Guo, H., L. Xiao, S. Yu, H. Yang, J. Hu, G. Liu, and Y. Tang, (2014), “Analysis of anion exchange membrane fouling mechanism caused by anion polyacrylamide in electrodialysis”, Desalination, 346(0), pp.46-53.
    39. Han, L., K.G. Karthikeyan, M.A. Anderson, and K.B. Gregory, (2014), “Exploring the impact of pore size distribution on the performance of carbon electrodes for capacitive deionization”, Journal of Colloid and Interface Science, 430(0), pp.93-99.
    40. Hong, C.-I., H.-Y. Kang, H.P. Wang, W.-K. Lin, U.-S. Jeng, and C.-H. Su, (2011), “Cu–ZnO@ C nanoreactors studied by in situ synchrotron SAXS spectroscopy”, Journal of Electron Spectroscopy and Related Phenomena, 184(3), pp.301-303.
    41. Hou, C.-H. and C.-Y. Huang, (2013), “A comparative study of electrosorption selectivity of ions by activated carbon electrodes in capacitive deionization”, Desalination, 314(0), pp.124-129.
    42. Hu, W., C. Peng, W. Luo, M. Lv, X. Li, D. Li, Q. Huang, and C. Fan, (2010), “Graphene-based antibacterial paper”, ACS Nano, 4(7), pp.4317-4323.
    43. Huang, C.-H., H.P. Wang, J.-E. Chang, and E.M. Eyring, (2009), “Synthesis of nanosize-controllable copper and its alloys in carbon shells”, Chemical Communications, 31), pp.4663-4665.
    44. Huang, C. and T. Xu, (2006), “Electrodialysis with bipolar membranes for sustainable development”, Environmental Science & Technology, 40(17), pp.5233-5243.
    45. Huang, W., Y. Zhang, S. Bao, and S. Song, (2013), “Desalination by capacitive deionization with carbon-based materials as electrode: A review ”, Surface Review and Letters, 20(06), pp.1330003.
    46. Huang, Y., E. Ma, and G. Zhao, (2015), “Thermal and structure analysis on reaction mechanisms during the preparation of activated carbon fibers by KOH activation from liquefied wood-based fibers”, Industrial Crops and Products, 69(0), pp.447-455.
    47. Humplik, T., J. Lee, S. O’hern, B. Fellman, M. Baig, S. Hassan, M. Atieh, F. Rahman, T. Laoui, and R. Karnik, (2011), “Nanostructured materials for water desalination”, Nanotechnology, 22(29), pp.292001.
    48. Jeong, S., S. Yeo, and S. Yi, (2005), “The effect of filler particle size on the antibacterial properties of compounded polymer/silver fibers”, Journal of Materials Science, 40(20), pp.5407-5411.
    49. Jia, B. and L. Zou, (2012), “Graphene nanosheets reduced by a multi-step process as high-performance electrode material for capacitive deionisation”, Carbon, 50(6), pp.2315-2321.
    50. Johnson, A. and J. Newman, (1971), “Desalting by means of porous carbon electrodes”, Journal of the Electrochemical Society, 118(3), pp.510-517.
    51. Kalogirou, S.A., (2005), “Seawater desalination using renewable energy sources”, Progress in Energy and Combustion Science, 31(3), pp.242-281.
    52. Kang, H. and H.P. Wang, (2012), “Cu@C dispersed TiO2 for dye-sensitized solar cell photoanodes”, Applied Energy, 100(pp.144-147.
    53. Karagiannis, I.C. and P.G. Soldatos, (2008), “Water desalination cost literature: review and assessment”, Desalination, 223(1), pp.448-456.
    54. Khawaji, A.D., I.K. Kutubkhanah, and J.-M. Wie, (2008), “Advances in seawater desalination technologies”, Desalination, 221(1), pp.47-69.
    55. Kim, J.S., E. Kuk, K.N. Yu, J.-H. Kim, S.J. Park, H.J. Lee, S.H. Kim, Y.K. Park, Y.H. Park, C.-Y. Hwang, Y.-K. Kim, Y.-S. Lee, D.H. Jeong, and M.-H. Cho, (2007), “Antimicrobial effects of silver nanoparticles”, Nanomedicine: Nanotechnology, Biology and Medicine, 3(1), pp.95-101.
    56. Kim, Y.-J., J. Hur, W. Bae, and J.-H. Choi, (2010), “Desalination of brackish water containing oil compound by capacitive deionization process”, Desalination, 253(1–3), pp.119-123.
    57. Kim, Y.M., S.J. Kim, Y.S. Kim, S. Lee, I.S. Kim, and J.H. Kim, (2009), “Overview of systems engineering approaches for a large-scale seawater desalination plant with a reverse osmosis network”, Desalination, 238(1–3), pp.312-332.
    58. Kimiagar, S. and N. Rashidi, (2015), “MIC and MBC of grapheme oxide”, International Journal, 3(2), pp.153-158.
    59. Lambert, T.N., C.A. Chavez, B. Hernandez-Sanchez, P. Lu, N.S. Bell, A. Ambrosini, T. Friedman, T.J. Boyle, D.R. Wheeler, and D.L. Huber, (2009), “Synthesis and characterization of titania−graphene nanocomposites”, The Journal of Physical Chemistry C, 113(46), pp.19812-19823.
    60. Lattemann, S. and T. Höpner, (2008), “Environmental impact and impact assessment of seawater desalination”, Desalination, 220(1–3), pp.1-15.
    61. Lee, H.J. and S.H. Jeong, (2005), “Bacteriostasis and skin innoxiousness of nanosize silver colloids on textile fabrics”, Textile Research Journal, 75(7), pp.551-556.
    62. Lee, K.P., T.C. Arnot, and D. Mattia, (2011), “A review of reverse osmosis membrane materials for desalination—Development to date and future potential”, Journal of Membrane Science, 370(1), pp.1-22.
    63. Li, C., X. Wang, F. Chen, C. Zhang, X. Zhi, K. Wang, and D. Cui, (2013), “The antifungal activity of graphene oxide–silver nanocomposites”, Biomaterials, 34(15), pp.3882-3890.
    64. Liu, S., T.H. Zeng, M. Hofmann, E. Burcombe, J. Wei, R. Jiang, J. Kong, and Y. Chen, (2011), “Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress”, ACS Nano, 5(9), pp.6971-6980.
    65. Liu, Y., L. Pan, X. Xu, T. Lu, Z. Sun, and D.H. Chua, (2014), “Enhanced desalination efficiency in modified membrane capacitive deionization by introducing ion-exchange polymers in carbon nanotubes electrodes”, Electrochimica Acta, 130(pp.619-624.
    66. McDonald, L., R. McFeeters, M. Daeschel, and H. Fleming, (1987), “A differential medium for the enumeration of homofermentative and heterofermentative lactic acid bacteria”, Applied and environmental microbiology, 53(6), pp.1382-1384.
    67. Murphy, G.W., (1965), “Electrochemical demineralization of water with carbon electrodes”,
    68. Nadakatti, S., M. Tendulkar, and M. Kadam, (2011), “Use of mesoporous conductive carbon black to enhance performance of activated carbon electrodes in capacitive deionization technology”, Desalination, 268(1–3), pp.182-188.
    69. Newman, J., R.G. Wilbourne, A.W. Venolia, A.M. Johnson, C. Marquardt, and S. United, The electrosorb process for desalting water. Research and development progress report / United States Dept. of the Interior ;no. 516. 1970, Washington, D.C.: U.S. Dept. of the Interior. iii, 31 p.
    70. Nguyen, V.H., B.-K. Kim, Y.-L. Jo, and J.-J. Shim, (2012), “Preparation and antibacterial activity of silver nanoparticles-decorated graphene composites”, The Journal of Supercritical Fluids, 72(0), pp.28-35.
    71. Oki, T. and S. Kanae, (2006), “Global hydrological cycles and world water resources”, Science, 313(5790), pp.1068-1072.
    72. Oldham, K.B., (2008), “A Gouy–Chapman–Stern model of the double layer at a (metal)/(ionic liquid) interface”, Journal of Electroanalytical Chemistry, 613(2), pp.131-138.
    73. Oren, Y., (2008), “Capacitive deionization (CDI) for desalination and water treatment — past, present and future (a review)”, Desalination, 228(1–3), pp.10-29.
    74. Oueslati, S., G. Brammertz, M. Buffière, C. Köble, T. Oualid, M. Meuris, and J. Poortmans, (2015), “Photoluminescence study and observation of unusual optical transitions in Cu2ZnSnSe4/CdS/ZnO solar cells”, Solar Energy Materials and Solar Cells, 134(pp.340-345.
    75. Pande, S., S.K. Ghosh, S. Praharaj, S. Panigrahi, S. Basu, S. Jana, A. Pal, T. Tsukuda, and T. Pal, (2007), “Synthesis of Normal and Inverted Gold−Silver Core−Shell Architectures in β-Cyclodextrin and Their Applications in SERS”, The Journal of Physical Chemistry C, 111(29), pp.10806-10813.
    76. Porada, S., L. Weinstein, R. Dash, A. Van Der Wal, M. Bryjak, Y. Gogotsi, and P. Biesheuvel, (2012), “Water desalination using capacitive deionization with microporous carbon electrodes”, ACS applied materials & interfaces, 4(3), pp.1194-1199.
    77. Porada, S., R. Zhao, A. van der Wal, V. Presser, and P.M. Biesheuvel, (2013), “Review on the science and technology of water desalination by capacitive deionization”, Progress in Materials Science,
    78. Qiblawey, H.M. and F. Banat, (2008), “Solar thermal desalination technologies”, Desalination, 220(1–3), pp.633-644.
    79. Rao, C.N.R., A.K. Sood, K.S. Subrahmanyam, and A. Govindaraj, (2009), “Graphene: The new two-dimensional nanomaterial”, Angewandte Chemie International Edition, 48(42), pp.7752-7777.
    80. Reller, L.B., M. Weinstein, J.H. Jorgensen, and M.J. Ferraro, (2009), “Antimicrobial susceptibility testing: A review of general principles and contemporary practices”, Clinical Infectious Diseases, 49(11), pp.1749-1755.
    81. Ruparelia, J.P., A.K. Chatterjee, S.P. Duttagupta, and S. Mukherji, (2008), “Strain specificity in antimicrobial activity of silver and copper nanoparticles”, Acta Biomaterialia, 4(3), pp.707-716.
    82. Sathishkumar, M., K. Sneha, S.W. Won, C.W. Cho, S. Kim, and Y.S. Yun, (2009), “Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity”, Colloids and Surfaces B: Biointerfaces, 73(2), pp.332-338.
    83. Schartl, W., (2010), “Current directions in core-shell nanoparticle design”, Nanoscale, 2(6), pp.829-843.
    84. Seo, S.-J., H. Jeon, J.K. Lee, G.-Y. Kim, D. Park, H. Nojima, J. Lee, and S.-H. Moon, (2010), “Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications”, Water Research, 44(7), pp.2267-2275.
    85. Shahriary, L., R. Nair, S. Sabharwal, and A.A. Athawale, (2015), “One-step synthesis of Ag–reduced graphene oxide–multiwalled carbon nanotubes for enhanced antibacterial activities”, New Journal of Chemistry,
    86. Shen, X., L. Jiang, Z. Ji, J. Wu, H. Zhou, and G. Zhu, (2011), “Stable aqueous dispersions of graphene prepared with hexamethylenetetramine as a reductant”, Journal of Colloid and Interface Science, 354(2), pp.493-497.
    87. Shi, X.-F., X.-Y. Xia, G.-W. Cui, N. Deng, Y.-Q. Zhao, L.-H. Zhuo, and B. Tang, (2015), “Multiple exciton generation application of PbS quantum dots in ZnO@ PbS/graphene oxide for enhanced photocatalytic activity”, Applied Catalysis B: Environmental, 163(pp.123-128.
    88. Sidhu, B., D. Sharma, T. Tuteja, S. Gupta, and A. Kumar, Human health risk assessment of heavy metals from Bhalaswa Landfill, New Delhi, India, in Management of Natural Resources in a Changing Environment, N.J. Raju, W. Gossel, and M. Sudhakar, Editors. 2015, Springer International Publishing. p. 215-223.
    89. Sinha, R., R. Karan, A. Sinha, and S.K. Khare, (2011), “Interaction and nanotoxic effect of ZnO and Ag nanoparticles on mesophilic and halophilic bacterial cells”, Bioresource Technology, 102(2), pp.1516-1520.
    90. Sondi, I. and B. Salopek-Sondi, (2004), “Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria”, Journal of Colloid and Interface Science, 275(1), pp.177-182.
    91. Srivastava, P., J. Bragança, S.R. Ramanan, and M. Kowshik, (2013), “Synthesis of silver nanoparticles using haloarchaeal isolate Halococcus salifodinae BK3”, Extremophiles, 17(5), pp.821-831.
    92. Strathmann, H., (2010), “Electrodialysis, a mature technology with a multitude of new applications”, Desalination, 264(3), pp.268-288.
    93. Tsouris, C., R. Mayes, J. Kiggans, K. Sharma, S. Yiacoumi, D. DePaoli, and S. Dai, (2011), “Mesoporous carbon for capacitive deionization of saline water”, Environmental Science & Technology, 45(23), pp.10243-10249.
    94. Turcheniuk, K., C.-H. Hage, J. Spadavecchia, A.Y. Serrano, I. Larroulet, A. Pesquera, A. Zurutuza, M.G. Pisfil, L. Héliot, and J. Boukaert, (2015), “Plasmonic photothermal destruction of uropathogenic E. coli with reduced graphene oxide and core/shell nanocomposites of gold nanorods/reduced graphene oxide”, Journal of Materials Chemistry B, 3(3), pp.375-386.
    95. Wang, C., H. Zhang, J. Zhang, M. Li, H. Sun, and B. Yang, (2007), “Application of ultrasonic irradiation in aqueous synthesis of highly fluorescent CdTe/CdS core-shell nanocrystals”, The Journal of Physical Chemistry C, 111(6), pp.2465-2469.
    96. Welgemoed, T.J. and C.F. Schutte, (2005), “Capacitive Deionization Technology™: An alternative desalination solution”, Desalination, 183(1–3), pp.327-340.
    97. Wheat, P.F., (2001), “History and development of antimicrobial susceptibility testing methodology”, Journal of Antimicrobial Chemotherapy, 48(suppl 1), pp.1-4.
    98. Xu, P., J.E. Drewes, D. Heil, and G. Wang, (2008), “Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology”, Water Research, 42(10), pp.2605-2617.
    99. Yang, Y. and T. Liu, (2011), “Fabrication and characterization of graphene oxide/zinc oxide nanorods hybrid”, Applied Surface Science, 257(21), pp.8950-8954.
    100. Yeo, S.Y. and S.H. Jeong, (2003), “Preparation and characterization of polypropylene/silver nanocomposite fibers”, Polymer International, 52(7), pp.1053-1057.
    101. You, Z.-L. and H.-L. Zhu, (2004), “Syntheses, crystal structures, and antibacterial activities of four schiff base complexes of copper and zinc”, Zeitschrift für anorganische und allgemeine Chemie, 630(15), pp.2754-2760.
    102. Younos, T. and K.E. Tulou, (2005), “Overview of desalination techniques”, Journal of Contemporary Water Research & Education, 132(1), pp.3-10.
    103. Yu, D.-G., (2007), “Formation of colloidal silver nanoparticles stabilized by Na+–poly(γ-glutamic acid)–silver nitrate complex via chemical reduction process”, Colloids and Surfaces B: Biointerfaces, 59(2), pp.171-178.
    104. Yuan, W., Y. Gu, and L. Li, (2012), “Green synthesis of graphene/Ag nanocomposites”, Applied Surface Science, 261(0), pp.753-758.
    105. Zafra, M.C., P. Lavela, G. Rasines, C. Macías, J.L. Tirado, and C.O. Ania, (2014), “A novel method for metal oxide deposition on carbon aerogels with potential application in capacitive deionization of saline water”, Electrochimica Acta, 135(0), pp.208-216.
    106. Zeiri, L., B.V. Bronk, Y. Shabtai, J. Czégé, and S. Efrima, (2002), “Silver metal induced surface enhanced Raman of bacteria”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 208(1–3), pp.357-362.
    107. Zhang, D., T. Yan, L. Shi, Z. Peng, X. Wen, and J. Zhang, (2012), “Enhanced capacitive deionization performance of graphene/carbon nanotube composites”, Journal of Materials Chemistry, 22(29), pp.14696-14704.
    108. Zhang, L.L. and X. Zhao, (2009), “Carbon-based materials as supercapacitor electrodes”, Chemical Society Reviews, 38(9), pp.2520-2531.
    109. Zhao, J., D. Zhang, and J. Zhao, (2011), “Fabrication of Cu–Ag core–shell bimetallic superfine powders by eco-friendly reagents and structures characterization”, Journal of Solid State Chemistry, 184(9), pp.2339-2344.
    110. Zhao, R., Theory and operation of capacitive deionization systems. 2013: Wageningen University.
    111. Zhao, R., P.M. Biesheuvel, H. Miedema, H. Bruning, and A. van der Wal, (2010), “Charge efficiency: a functional tool to probe the double-layer structure inside of porous electrodes and application in the modeling of capacitive deionization”, The Journal of Physical Chemistry Letters, 1(1), pp.205-210.

    下載圖示 校內:2020-06-11公開
    校外:2020-06-11公開
    QR CODE