| 研究生: |
賴炫霖 Lai, Hsuan-Lin |
|---|---|
| 論文名稱: |
應用於白光發光二極體之磷酸系LiBaPO4: Re (Re= Tm3+, Tb3+, Tb3+/ Ce3+) 螢光材料之研究 Research on LiBaPO4: Re (Re= Tm3+, Tb3+, Tb3+/ Ce3+) phosphate based phosphors applied in white light LED |
| 指導教授: |
張守進
Chang, Shoou-Jinn |
| 共同指導教授: |
楊茹媛
Yang, Ru-Yuan |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 螢光粉 、磷酸 、熱穩定性 、微波 、燒結 、增感劑 |
| 外文關鍵詞: | phosphor, phosphate, thermal stability, microwave, sintering, sensitizer |
| 相關次數: | 點閱:109 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們選用LiBaPO4做為主體晶格。並摻雜Tm3+、Tb3+及Tb3+, Ce3+以製備藍光及綠光螢光粉。
在摻雜Tm3+部分,利用傳統高溫爐製備螢光粉,並討論其微結構及發光特性。為了做比較,另外利用微波輔助燒結法以相同的燒結條件製備螢光粉。結果顯示,利用微波輔助燒結法製備之螢光粉可得到結晶性較佳,粉體分散性較佳及發光強度較佳的螢光粉。
在摻雜Tb3+部分,利用傳統高溫爐製備螢光粉,並討論其微結構及發光特性。
為了做比較,另外添加Ce3+增感劑以相同的燒結條件製備螢光粉。結果顯示,添加Ce3+增感劑的螢光粉其最佳激發波段,可由中紫外光調整至近紫外光波段。
針對Tb3+, Ce3+共摻雜螢光粉,我們額外探討其熱穩定性並與市售YAG: Ce螢光粉比較。由分析結果可知,Tb3+, Ce3+共摻雜螢光粉其熱穩定性優於市售YAG: Ce螢光粉,應可應用於高功率白光LED。
In this dissertation, we choose LiBaPO4 as host. And doped with Tm3+, Tb3+ and Tb3+ , Ce3+ ions to synthesis blue and green phosphors.
In the part of doped Tm3+, the phosphors was prepared by conventional furnace, and its microstructure and photoluminescent properties were discussed. In addition, the microwave-assisted sintering method was used to prepare the phosphors under the same sintering conditions. The results show that the phosphors prepared by the microwave- assisted method can be used to obtain with better crystallinity , better phospor dispersion and better photoluminescence intensity.
In the part of doped Tb3+, the phosphors was prepared by conventional furnace, and its microstructure and photoluminescent properties were discussed. For the purpose of comparison, additional Ce3+ sensitizer was used to prepare the phosphors under the same sintering conditions. The results show that the best excitation band of the phosphor adding Ce3+ sensitizer can be adjusted from the medium ultraviolet to the near ultraviolet band.
For Tb3+, Ce3+ co-doped phosphor, we additionally investigate its thermal stability and compare it with commercial YAG: Ce. From the analysis results, Tb3+, Ce3+ co-doped phosphor is better than the commercial YAG: Ce, should be applied to high-power WLED.
Chapter 1
[1] D. K. Yim, H. J. Song, I. S. Cho, J. S. Kim, K. S. Hong, A novel blue-emitting NaSrPO4: Eu2+ phosphor for near UV based white light-emitting-diodes, Mater. Lett. 65, 1666 (2011).
[2] J. K. Sheu, S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, Y. C. Lin, W. C. Lai, J. M.Tsai, G. C. Chi, R. K. Wu, White light emission from near UV InGaN/GaN LED chip precoated with blue/green/red phosphors, IEEE Photonics Technol. Lett. 15, 18 (2003).
[3] 陳皇宇,微波輔助燒結製備應用於白光 LED 之紅光及綠光螢光粉,博士論文,國立成功大學,2013。
[4] Fred Schubert, Light-Emitting Diodes, The press syndicate of the university of Cambridge, UK, 2003.
[5] Skoog, Holler, Nieman, Principles of Instrumental analysis, fifth edition, Saunders college Publishing, 1992.
[6] 楊茹媛、彭昱銘、蘇炎坤,白光LED用之螢光粉材料之基本原理與技術發展,電子月刊,197期,第140-157頁,2011。
[7] 陳建良,不同活化劑摻雜對 KSrPO4 主體晶格之微結構與光學性質之研究,碩士論文,國立屏東科技大學,2013
[8] Y. Chen, J. Wang, X. Zhang, G. Zhang, M. Gong, Q. Su, An intense green emitting LiSrPO4: Eu2+, Tb3+ for phosphor-converted LED, Sens. Actuators, B 148, 259 (2010).
[9] E. Radkov, R. Bompiedi, A. M. Srivastava, A. A. Setlur, C. Becker, White light with UV LEDs, Proc. SPIE 2004 5187, 171 (2004).
[10] J. S. Kim, P. E. Jeon, J. C. Choi, H. L. Park, Emission color variation of M2SiO4: Eu2+ (M= Ba, Sr, Ca) phosphors for light-emitting diode, Solid State Commun. 133, 187 (2005).
[11] S. Kubota, H. Hara, H. Yamane, M. Shimada, Luminescent property of Eu3+ in a new compound, (Sr0.99La1.01)Zn0.99O3.495, J. Electrochem. Soc. 149, H68 (2002).
[12] S. Kubota, R. L. Stanger, Y. Suzuyama, H. Yamane, M. Shimada, Luminescent properties of Eu3+ in defect apatite, Sr3La6(SiO4)6, J. Electrochem. Soc. 149, H134 (2002).
[13] K. Tadatomo, H. Okagawa, Y. Ohuchi, Tsunekawa, T. Jyouichi, Y. Imada, M. Kato, H. Kudo, T. Taguchi, High output power InGaN ultraviolet light-emitting diodes fabricated on patterned substrates using metalorganic Vapor Phase Epitaxy, Phys. Status Solidi A 188, 121 (2001).
[14] K. Srinivasu, R. S. Ningthoujam, V. Sudarsan, R. K. Vatsa, A. K. Tyagi, P. Srinivasu, A. Vinu, Eu3+ and Dy3+ doped YPO4 nanoparticles: Low temperature synthesis and luminescence studies, J. Nanoscience Nanotechnology 9, 3034 (2009).
[15] Z. Yang, G. Yang, S. Wang, J. Tian, X. Li, Q. Guo, G. Fu, A novel green-emitting phosphor NaCaPO4:Eu2+ for white LEDs, Mater. Lett. 62, 1884 (2008).
[16] C. C. Lin, R. S. Liu, Y. S. Tang, S. F. Hu, Full-Color and thermally stable KSrPO4:Ln, Ln= Eu, Tb, Sm phosphors for white- light-emitting diodes, J. Electrochem. Soc. 155, J248 (2008).
[17] Y. J. Park, Y. J. Kim, Blue emission properties of Eu-doped CaAl2O4 phosphors synthesized by a flux method, Mater. Sci. Eng. B 146, 84 (2008).
[18] W. Yuhu, W. Zhilong, Characterization of Y2O2S: Eu3+, Mg2+, Ti4+ Long-lasting phosphor synthesized by flux method, J. Rare Earths 24, 25 (2006).
[19] S. Zhang, W. Zhuang, C. Zhao, Influence of flux on properties of Y3Al5O12: Ce phosphor, J. Chin. Rare Earth Soc. 20, 605 (2002).
[20] L. Ma, J. Hu, G. Wan, Effect of flux on YAG: Ce phosphors prepared by solid-state reactions, Chin. J. Lumin. 27, 348 (2006).
[21] A. Nag, T. R. N. Kutty, Role of B2O3 on the phase stability and long phosphorescence of SrAl2O4 : Eu, Dy, J. Alloys Compd. 354, 221 (2003).
[22] Y. K. Su, Y. M. Peng, R. Y. Yang, J. L. Chen, Effects of NaCl flux on microstructure and luminescent characteristics of KSrPO4:Eu2+ phosphors, opt. mater. 34, 1598 (2012).
[23] Y. M. Peng, Y. K. Su, R. Y. Yang, The charge transfer transition phenomenon and microstructure of Eu3+-doped NaCaPO4 phosphors sintered with flux via solid-state reaction, Mater. Res. Bull. 48, 1946 (2013).
[24] R. Y. Yang, Y. M. Peng, Y. K. Su, Novel red emitting microwave-assisted sintered LiSrPO4: Eu3+ phosphors for application in near-UV WLEDs, IEEE J. Electronic Mater. 42, 2910 (2013).
[25] R. Y. Yang, Y. M. Peng, H. L. Lai C. J. Chu, B. Chiou, Y. K. Su, Effect of the different concentrations of Eu3+ ions on the microstructure and photoluminescent properties of Zn2SiO4:xEu3+ phosphors and synthesized with TEOS solution as silicate source, Opt. Mater. 35, 1719 (2013).
[26] Y. M. Peng, Y. K. Su, R. Y. Yang, Improving Thermal Stability of KSrPO4:Tb3+ phosphors Prepared by microwave assisted sintering, Opt. Mater. 35, 2102 (2013).
[27] A. K. Gulnar, V. Sudarsan, R. K. Vatsa, C. Hubli, U. K. Gautam, A. Vinu, A. K. Tyagi, CePO4:Ln (Ln) Tb3+ and Dy3+) nanoleaves incorporated in silica sols, Crystal Growth & Design 9, 2451 (2009).
[28] K. Gulnar, V. Sudarsan, R. K. Vatsa, T. Sakuntala, A. K. Tyagi, U. K. Gautam, A. Vinu, Nucleation sequence on the cation exchange process between Y0.95Eu0.05PO4 and CePO4 nanorods, Nanoscale 2, 2847 (2010).
[29] 賴炫霖,以固態反應法製備LiBaPO4:Re3+ (Re3+: Pr3+, Ce3+)螢光粉之微結構與發光特性之研究,碩士論文,國立屏東科技大學,2013。
[30] 彭昱銘,應用於白光發光二極體之磷酸系 ABPO4 (A= Li, Na, K; B= Ca, Sr, Ba)下轉換螢光材料之研究,博士論文,國立成功大學,2013。
[31] 陳坤賢,應用於白光發光二極體之磷酸系NaSrPO4: Re (Re= Tb3+, Sm3+, Tb3+ / Ce3+)螢光材料之研究,博士論文,國立中山大學,2016。
[32] H. L. Lai, M. H. Weng, R. Y. Yang, S. J. Chang, Enhanced Photoluminescent Properties and Crystalline Morphology of LiBaPO4: Tm3+ Phosphor through Microwave Sintering Method, Materials 9.5, 356 (2016).
[33] H. L. Lai, R. Y. Yang, S. J. Chang, Thermally Stable Luminescence Properties and Energy Transfer of Green-emitting LiBaPO4: Tb3+, Ce3+ Phosphor, Ceram. Int. 43.1, S688 (2017).
[34] R. Y. Yang, Y. M. Peng, H. L. Lai, Y. K. Su S. J. Chang, The optimum sintering condition for KSrPO4: Eu3+ phosphors applied in WLEDs, Ceram. Int. 43.1, S682 (2017).
Chapter 2
[1] Skoog, Holler, N ieman, Principles of Instrumental analysis, fifth edition, Saunders college Publishing, 1992.
[2] 陳皇宇,微波輔助燒結製備應用於白光 LED 之紅光及綠光螢光粉,博士論文,國立成功大學,2013。
[3] M. N. Rahaman, Sintering technology, New York: Marcel Dekker, 1990.
[4] 楊茹媛、彭昱銘、蘇炎坤,白光 LED 用之螢光粉材料之基本原理與技術發展, 電子月刊,197 期,第 140-157 頁,2011。
[5] 彭昱銘, 應用於白光發光二極體之磷酸系ABPO4 (A= Li, Na, K; B= Ca, Sr, Ba)下轉換螢光材料之研究,博士論文,國立成功大學,2013。
[6] J. A. DeLuca, An introduction to luminescence in inorganic solids, J. Chem. Educ. 57, 541 (1980).
[7] Y. M. Peng, Y. K. Su, R. Y. Yang, Improving Thermal Stability of KSrPO4:Tb3+ phosphors Prepared by microwave assisted sintering, Opt. Mater. 35, 2102 (2013).
[8] 陳坤賢,應用於白光發光二極體之磷酸系NaSrPO4: Re (Re= Tb3+, Sm3+, Tb3+ / Ce3+)螢光材料之研究,博士論文,國立中山大學,2016。
[9] H. L. Lai, M. H. Weng, R. Y. Yang, S. J. Chang, Enhanced Photoluminescent Properties and Crystalline Morphology of LiBaPO4: Tm3+ Phosphor through Microwave Sintering Method, Materials 9.5, 356 (2016).
Chapter 3
[1] H. L. Lai, R. Y. Yang, M. H. Weng, S. J. Chang, Novel blue-emitting LiBaPO4: Tm3+ phosphor for solid-state lighting The 2nd International Conference on Engineering and Natural Science 342 (2015).
[2] P. D. Ramash, D. Brandom, L. Schachter, Use of Partially Oxidized SiC Particle Bed for Microwave Sintering of Low Loss Ceramics, Mater. Sci. Eng. A 266, 211 (1999).
[3] M. H. Weng, R. Y. Yang, Y. M. Peng, J. L. Chen, Yellowish green-emitting KSrPO4: Tb3+ phosphors with various doping concentrations prepared by using microwave assisted sintering, Ceram. Int. 38, 1319 (2012).
[4] H. L. Lai, M. H. Weng, R. Y. Yang, S. J. Chang, Enhanced Photoluminescent Properties and Crystalline Morphology of LiBaPO4: Tm3+ Phosphor through Microwave Sintering Method, Materials 9.5, 356 (2016).
[5] R. Y. Yang, H. L. Lai, Y. M. Peng, S. J. Chang, Energy transfer mechanisms in green emitting LiBaPO4: Tb3+ phosphors, International Conference on Optical Particle Characterization 92320Z (2014).
[6] H. L. Lai, R. Y. Yang, S. J. Chang, Thermally Stable Luminescence Properties and Energy Transfer of Green-emitting LiBaPO4: Tb3+, Ce3+ Phosphor, Ceram. Int. 43.1, S688 (2017).
[7] 陳皇宇,微波輔助燒結製備應用於白光 LED 之紅光及綠光螢光粉,博士論文,國立成功大學,2013。
[8] 彭昱銘,應用於白光發光二極體之磷酸系 ABPO4 (A= Li, Na, K; B= Ca, Sr, Ba)下轉換螢光材料之研究,博士論文,國立成功大學,2013。
[9] 陳坤賢,應用於白光發光二極體之磷酸系NaSrPO4: Re (Re= Tb3+, Sm3+, Tb3+ / Ce3+)螢光材料之研究,博士論文,國立中山大學,2016。
Chapter 4
[1] H. L. Lai, R. Y. Yang, M. H. Weng, S. J. Chang, Novel blue-emitting LiBaPO4: Tm3+ phosphor for solid-state lighting The 2nd International Conference on Engineering and Natural Science 342 (2015).
[2] Y. Z. Li, Y. H. Wang, Z. F. Wang, Z. Y. Zhang, UV–VUV-excited photoluminescence of Tm3+ substituted β-rhenanite as a blue-emitting phosphor, J. Lumin. 130, 1225 (2010).
[3] J. Sun, X. Zhang, Z. Xia, H. Du, Luminescent properties of LiBaPO4: RE (RE = Eu2+, Tb3+, Sm3+) phosphors for white light-emitting diodes, J. appl. Physics 111, 013101 (2012).
[4] L. G. Van Uitert, Characterization of energy transfer interactions between rare earth ions, J. Electrochem. Soc. 114, 1048 (1967).
[5] L. Ozawa, P. M. Jaffe, The mechanism of the emission color shift with activator concentration in +3 activated phosphors, J. Electrochem. Soc. 118, 1678 (1971).
[6] D. L. Dexter, A theory of sensitized luminescence in solids, J. Chem. Phys. 21, 836 (1953).
[7] H. L. Lai, M. H. Weng, R. Y. Yang, S. J. Chang, Enhanced Photoluminescent Properties and Crystalline Morphology of LiBaPO4: Tm3+ Phosphor through Microwave Sintering Method, Materials 9.5, 356 (2016).
[8] M. H. Weng, R. Y. Yang, Y. M. Peng, J. L. Chen, Yellowish green-emitting KSrPO4: Tb3+ phosphors with various doping concentrations prepared by using microwave assisted sintering, Ceram. Int. 38, 1319 (2012).
[9] R. Y. Yang, H.Y. Chen, C.M. Hsiung, S.J. Chang, Crystalline morphology and photoluminescent properties of YInGe2O7: Eu3+ phosphors prepared from microwave and conventional sintering, Ceram. Int. 37, 749 (2011).
[10] H. Y. Chen, R. Y. Yang, S. J. Chang, Improving crystalline morphology and photoluminescent properties of BaY2ZnO5: Eu3+ phosphors prepared using microwave assisted sintering, Mater. Lett. 64, 2548 (2010).
[11] H. Y. Chen, R. Y. Yang, S. J. Chang, Y. K. Yang, Microstructure and photoluminescent properties of Sr2SiO4: Eu3+ phosphors with various NH4Cl flux concentrations, Mater. Res. Bull. 47, 1412 (2012).
[12] R. Y. Yang, H. L. Lai, Microstructure, and luminescence properties of LiBaPO4: Dy3+ phosphors with various Dy3+ concentrations prepared by microwave assisted sintering, J. Lumin. 145, 49 (2014).
[13] R. Y. Yang, H. L. Lai, Y. M. Peng, S. J. Chang, Energy transfer mechanisms in green emitting LiBaPO4: Tb3+ phosphors, International Conference on Optical Particle Characterization 92320Z (2014).
[14] Q. Z. Wang, J. Tian, X. H. Yang, X. Gao, Luminescence and energy transmission of Tb3+, Dy3+ activated LaBO3, J. Chin. Lumin. 16, 57 (1995).
[15] C. H. Park, S. J. Park, B. Y. Yu, H. S. Bae, C. H. Kim, C. H. Pyun, G. Y., Hong, VUV excitation of Y3Al5O12: Tb phosphor prepared by a sol-gel process, J. Mater. Sci. Lett. 19, 335 (2000)
[16] H. L. Lai, R. Y. Yang, S. J. Chang, Thermally Stable Luminescence Properties and Energy Transfer of Green-emitting LiBaPO4: Tb3+, Ce3+ Phosphor, Ceram. Int. 43.1, S688 (2017).
[17] H. Yang, Y. S. Kim, Energy transfer-based spectral properties of Tb-, Pr-, or Sm-codoped YAG: Ce nanocrystalline phosphors, J. Lumin. 128, 1570 (2008).
[18] J. Zhong, H. Liang, Q. Su, P. Dorenbos, M. D. Birowosuto, Luminescence of NaGd (PO3)4: Ce3+ and its potential application as a scintillator material, Chem. Phys. Lett. 445, 32 (2007).
[19] W. T. Carnall, P. R. Fields, K. Rajnak, Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+, J. Phys. Chem. 49, 4412 (1968).
[20] H. Yang, C. Li, Y. Tao, J. Xu, G. Zhang, Q. Su, The luminescence of CaYBO4: RE3+ (RE= Eu, Gd, Tb, Ce) in VUV–visible region, J. Lumin. 126, 196 (2007).
[21] Y. Yang, A. Bao, H. Lai, Y. Tao, H. Yang, Luminescent properties of SrAl2B2O7: Ce3+, Tb3+, J. Phys. Chem. Solids. 70, 1317 (2009).
[22] G. Li, D. Geng, M. Shang, Y. Zhang, C. Peng, Z. Cheng, J. Lin, Color tuning luminescence of Ce3+ / Mn2+ / Tb3+-triactivated Mg2Y8(SiO4)6O2 via energy transfer: potential single-phase white-light-emitting phosphors, J. Phys. Chem. C. 115, 21882 (2011).
[23] C. Zhang, C. Li, C. Peng, R. Chai, S. Huang, D. Yang, Z. Cheng, J. Lin, Facile and controllable synthesis of monodisperse CaF2 and CaF2: Ce3+ / Tb3+ hollow spheres as efficient luminescent materials and smart drug carriers, Chem. Eur. J. 16, 5672 (2010)
[24] M. Yu, J. Lin, J. Fu, H. J. Zhang, Y. C. Han, Sol–gel synthesis and photoluminescent properties of LaPO4: A (A= Eu3+, Ce3+, Tb3+) nanocrystalline thin films, J. Mater. Chem. 13, 1413 (2003).
[25] C. Shulan, Synthesis and Luminescence of Zn4B6O13: Ce3+, Tb3+, J. Chinese Rare Earth Soc. 20, 222 (2003).
[26] J. Sun, X. Zhang, Z. Xia, H. Du, Luminescent properties and energy transfer of Ce3+, Tb3+ co-doped NaBaPO4 phosphor, J. Electrochem. Soc. 158, J368 (2011).
[27] C. Ouyang, M. A. Shuai, R. A. O. Yang, X. Zhou, X. Zhou, Y. Li, ZnPO4: Tb3+, Ce3+ green phosphors with high efficiency, J. Rare Earths 30, 637 (2012).
[28] R. T. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst. A 32, 751 (1976).
[29] R. Cao, D. Peng, H. Xu, S. Jiang, T. Fu, W. Luo, Tunable emission, energy transfer and charge compensation in Sr3(VO4)2: Sm3+, P5+, Na+ phosphor, Spectrochim Acta A Mol Biomol Spectrosc. 150, 465 (2015).
[30] P. Dorenbos, 5d-level energies of Ce3+ Fluoride I. and the crystalline environment. compounds, Phys. Rev. B Condens. Matter Mater. Phys. 62, 15640 (2000).
[31] P. Dorenbos, The 5d level positions of the trivalent lanthanides in inorganic compounds, J. Lumin. 91, 155 (2000).
[32] S. Zhang, Y. Nakai, T. Tsuboi, Y. Huang, H. J. Seo, The thermal stabilities of luminescence and microstructures of Eu2+-doped KBaPO4 and NaSrPO4 with β-K2SO4 type structure, Inorg. Chem. 50, 2897 (2011).
[33] C. C. Lin, R. S. Liu, Y. S. Tang, S. F. Hu, Full-Color and thermally stable KSrPO4: Ln, Ln= Eu, Tb, Sm phosphors for white- light-emitting diodes, J. Electrochem. Soc. 155, J248 (2008).
[34] C. C. Lin, Y. S. Tang, S. F. Hu, R. S. Liu, KBaPO4: Ln (Ln= Eu, Tb, Sm) phosphors for UV excitable white light-emitting diodes, J. Lumin. 129, 1682 (2009).