| 研究生: |
汪淳竹 Wang, Chun-Zhu |
|---|---|
| 論文名稱: |
基於狀態變數與Hermite型置點法之移動最小二乘法求解波松問題 The Moving Least Square Methods Based on State Variables and Hermite Type Collocation for Solving Poisson's Equations |
| 指導教授: |
王永明
Wang, Yong-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 130 |
| 中文關鍵詞: | 移動最小二乘法 、無元素法 、波松方程式 |
| 外文關鍵詞: | moving least square method, meshless method |
| 相關次數: | 點閱:86 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文使用狀態變數與Hermite型置點之移動最小二乘方法分析波松方程式包括穩態熱傳與二維勢能流問題。在狀態變數法中於局部區域建立場量變數與其一階導數之近似函數,利用移動最小二乘法,考慮節點上近似函數之殘值與邊界之殘值及控制方程之殘值,建立加權殘值二次式,使其最小,可得含有狀態變數之節點值表示的近似函數,再利用狀態變數的節點值與近似函數在節點上之近似值須滿足一致性之條件,利用置點法建立聯立方程式求解,可一次求解出主要變數與其一階導數的節點值。Hermite型置點在局部區域只建立主要變數近似函數,建立加權殘值二次式時,一樣只考慮主要函數之殘值,再加上邊界之殘值及控制方程之殘值,使其最小,得含有主要變數的節點值表示之近似函數,且利用變數節點值與近似函數之節點值須滿足一致性,在置點的同時將其一階導數也考慮進去,一樣可一次求得主要變數與其一階導數近似函數節之點值。
本文數值範例中求解不同邊界條件之波松問題,並將求出之數值結果與解析解對照,驗證兩數值方法之精度及收斂率,並討論不同邊界條間對數值結果精度之影響。
In this paper, we use the moving least square methods based on state variables and Hermite type collocation to solve the two-dimensional Poisson's equations, including the steady-state heat transfer and potential flow problems. The core concepts of the two numerical methods discussed in this paper are similar to the idea of Moving Least Squares Methods. Considering about governing equations, boundary conditions, and the minimal weighted sum of the approximation of state variables, the values of the approximate functions can be obtained. As a result, the accuracy of the numerical results is great.
In the numerical examples, we solved Poisson's equations with various boundary conditions, and we compared the numerical results with exact solutions to examine the accuracy and the rate of convergence of the two methods. In this paper we also discuss the influence on numerical accuracy due to different boundary conditions.
[1] L.B. Lucy, A numerical approach to the testing of the fission hypothesis. The astronomical journal, 1977. 82: p. 1013-1024.
[2] H.T. Shen, J. Su, and L. Liu, SPH simulation of river ice dynamics. Journal of Computational Physics, 2000. 165(2): p. 752-770.
[3] P. Lancaster, and K. Salkauskas, Surfaces generated by moving least squares methods. Mathematics of computation, 1981. 37(155): p. 141-158.
[4] B. Nayroles, G. Touzot, and P. Villon, Generalizing the finite element method: diffuse approximation and diffuse elements. Computational mechanics, 1992. 10(5): p. 307-318.
[5] T.Belytschko, Y.Y. Lu, and L. Gu, Element‐free Galerkin methods. International journal for numerical methods in engineering, 1994. 37(2): p. 229-256.
[6] T.Belytschko, L. Gu, and Y.Y. Lu, Fracture and crack growth by element free Galerkin methods. Modelling and Simulation in Materials Science and Engineering, 1994. 2(3A): p. 519.
[7] T.Belytschko, Y.Y. Lu, L. Gu, M. Tabbara, Element-free Galerkin methods for static and dynamic fracture. International Journal of Solids and Structures, 1995. 32(17): p. 2547-2570.
[8] W.K. Liu, S. Jun, and Y.F. Zhang, Reproducing kernel particle methods. International Journal for Numerical Methods in Fluids, 1995. 20(8‐9): p. 1081-1106.
[9] K.M. Liew, T.Y. Ng, and Y.C. Wu, Meshfree method for large deformation analysis–a reproducing kernel particle approach. Engineering Structures, 2002. 24(5): p. 543-551.
[10] J.X. Zhou, H.Y. Zhang, and L. Zhang, Reproducing kernel particle method for free and forced vibration analysis. Journal of Sound and Vibration, 2005. 279(1): p. 389-402.
[11] H.S. Liu, and M.W. Fu, Adaptive reproducing kernel particle method using gradient indicator for elasto-plastic deformation. Engineering Analysis with Boundary Elements, 2013. 37(2): p. 280-292.
[12] E. Onate,S.Idelsohn, O.C. Zienkiewicz, R.L. Taylor, C. Sacco, A stabilized finite point method for analysis of fluid mechanics problems. Computer Methods in Applied Mechanics and Engineering, 1996. 139(1): p. 315-346.
[13] S.N. Atluri, and T. Zhu, A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Computational Mechanics, 1998. 22(2): p. 117-127.
[14] H. Lin, and S.N. Atluri, Meshless local Petrov-Galerkin(MLPG) method for convection diffusion problems. CMES(Computer Modelling in Engineering & Sciences), 2000. 1(2): p. 45-60.
[15] Z. Han, Z. Yao, and S.N. Atluri, Weakly-singular traction and displacement boundary integral equations and their meshless local Petrov-Galerkin approaches. Tsinghua Science & Technology, 2005. 10(1): p. 1-7.
[16] K.M. Liew, Y.Q. Huang, and J.N. Reddy, Moving least squares differential quadrature method and its application to the analysis of shear deformable plates. International Journal for Numerical Methods in Engineering, 2003. 56(15): p. 2331-2351.
[17] L. Wu, H. Li, and D.Wang, Vibration analysis of generally laminated composite plates by the moving least squares differential quadrature method. Composite structures, 2005. 68(3): p. 319-330.
[18] K.M. Liew, C. Feng , Y. Cheng, and S. Kitipornchai, Complex variable moving least‐squares method: a meshless approximation technique. International journal for numerical methods in engineering, 2007. 70(1): p. 46-70.
[19] A. Khosravifard, and M.R. Hematiyan, A new method for meshless integration in 2D and 3D Galerkin meshfree methods. Engineering Analysis with Boundary Elements, 2010. 34(1): p. 30-40.
[20] S.W. Yang, Y.M. Wang, and H.S. Hu, A meshless collocation method based on the differential reproducing kernel approximation. Computer Modeling in Engineering and Sciences (CMES), 2010. 60(1): p. 1.
[21] Y.M. Wang, S.M. Chen, and C.P. Wu, A meshless collocation method based on the differential reproducing kernel interpolation. Computational Mechanics, 2010. 45(6): p. 585-606.
[22] S.M. Chen,C.P. Wu, and Y.M. Wang, A Hermite DRK interpolation-based collocation method for the analyses of Bernoulli–Euler beams and Kirchhoff–Love plates. Computational Mechanics, 2011. 47(4): p. 425-453.
[23] T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, P.Krysl, Meshless methods: an overview and recent developments. Computer methods in applied mechanics and engineering, 1996. 139(1): p. 3-47.
[24] P. Krysl, and T. Belytschko, ESFLIB: A library to compute the element free Galerkin shape functions. Computer methods in applied mechanics and engineering, 2001. 190(15): p. 2181-2205.
[25] 賴穎宣(2013)以受束制之移動最小二乘方法求解波松方程式。國立成功大學土木工程研究所碩士論文。