簡易檢索 / 詳目顯示

研究生: 邱佳聆
Chiu, Chia-Ling
論文名稱: 利用鈷觸媒自由基聚合反應合成聚(乙烯醇-苯乙烯)嵌段共聚物及其應用於奈米碳管之分散
Synthesis of poly(vinyl alcohol-b-styrene) copolymers using cobalt-mediated radical polymerization and their application on dispersion of carbon nanotube
指導教授: 侯聖澍
Hou, Sheng-Shu
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 78
中文關鍵詞: 有機鈷觸媒活性自由基聚合嵌段共聚合物CNT分散導電度
外文關鍵詞: Cobalt-Mediated Radical Polymerization, Block copolymers, CNT, Dispersants, Conductivity
相關次數: 點閱:111下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用過氧化苯甲醯(BPO)/檸檬酸鈉(Na3CA)/乙醯丙酮鈷 (Cobalt(II) acetylacetonate, Co(acac)2)觸媒進行乙酸乙烯酯(Vinyl acetate, VAc)與苯乙烯(St)的有機鈷觸媒活性自由基聚合(Cobalt-Mediated Radical Polymerization, CMRP)反應,聚合程序採一鍋法(One pot synthesis)可成功地聚合出 PDI在 1.3 以下的PVAc高分子鏈段;銜接第二鏈段的St聚合反應受到苯環結構的共軛影響,合成出Poly(VAc-b-PS) 嵌段共聚合物的 PDI 上升至 1.6。此嵌段共聚合物可經鹼液改質為可以有效分散奈米碳管(CNT)的聚(乙烯醇-苯乙烯) (Poly(VA-b-PS))嵌段共聚物雙親性高分子(Amphiphilic Polymer)材料。利用莫爾比 PVA : PS = 1 : 1.5 之嵌段共聚物作為CNT分散劑時,可成功的將CNT分散於N-甲基吡咯烷酮 (N-Methyl-2-pyrrolidone, NMP)溶劑中。另一方面,當添加0.005 wt% CNT於CNT/PVA材料時,CNT/PVA的導電度可達到4.86 x 10-4 Sm-1 (log σ = -3.31)的導電門檻(threshold)。當以Poly(VA-b-St)做為CNT在丙烯酸甲酯-丙烯酸丁酯-甲基丙烯酸縮水甘油酯共聚合物(Poly(MMA-co-BA-co-GMA))材料分散介質時,則只有1/100的添加比例,即可將0.3wt.% CNT均勻分散於Poly(MMA-co-BA-co-GMA)材料中。Poly(VA-b-St)的添加不僅可使Poly(MMA-co-BA-co-GMA)導電值達2.603 x 10-3 Sm-1的高導電值,且因Poly(VA-b-St)中的氫氧基(-OH)可與Poly(MMA-co-BA-co-GMA)中的環氧基進行開環交鏈反應,提升整體的耐溼性能及機械強度。

    Poly (VAc-b-St) block copolymers were synthesized using cobalt-mediated radical polymerization (CMRP). A redox system, which consists of benzoyl peroxide (oxidant) and sodium citrate (reductant), was used to initiate CMRP in the presence of cobalt (II) acetylacetonate (Co(acac)2). Poly (VA-b-St), prepared by methanolysis of Poly (VAc-b-PS), were used as dispersants of CNT in NMP solution and successfully dispersed CNT for 20 days.

    Carbon nanotubes (CNT)/polymer matrix composite films were made using Poly (VA(13,000)-b-St(46,000)) with PVA/PS molar ratio of 1/1.5 as dispersants. With 0.005 wt.% CNT loadings, the electrical conductivity of CNT/PVA films is 1.077 x 10-3 Sm-1, and the percolation threshold lies below 0.005 wt.%. Furthermore, in the Poly (MMA-co-BA-co-GMA)/Poly (VA-b-St) weight ratio of 100/1, the electrical conductivity of CNT/Poly (MMA-co-BA-co-GMA) film were improved and reached the percolation threshold at 0.3 wt.% CNT loadings. The acrylic materials were more resistant to moisture than the PVA due to the crosslinking reaction between the epoxy group of Poly (MMA-co-BA-co-GMA) and the hydroxyl group of Poly (VA-b-St).

    目錄 摘要 I Extended Abstract II 致謝 IX 目錄 X 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1-1 引言 1 1-2 研究動機 2 第二章 文獻回顧 3 2-1 高分子設計技術 3 2-1-1 可控/活性自由基聚合 3 2-1-2 有機金屬調控自由基聚合(OMRP) 4 2-2 有機鈷金屬錯合物自由基聚合(CMRP) 6 2-2-1 鈷催化自由基聚合反應機制 6 2-2-2 乙醯丙酮鈷(II) (Coll(acac)2)鈷觸媒錯合物 7 2-2-3 Coll(acac)2聚合VAc的CMRP機制 9 2-2-4 氧化還原起始系統 11 2-2-5 鈷觸媒之分離純化 13 2-3 高分子複合材料 14 2-3-1 高分子複合材簡介 14 2-3-2 奈米碳管介紹 14 2-3-3 CNT分散技術 16 2-3-4 CNT添於高分子之導電性質 22 第三章 實驗系統 26 3-1 實驗藥品與儀器 26 3-1-1 實驗藥品 26 3-1-2 實驗器材 27 3-1-3 分析儀器 27 3-2 實驗步驟 29 3-2-1 單體純化 29 3-2-2 聚(乙酸乙烯酯–苯乙烯)嵌段共聚物(Poly(VAc-b-St))之合成與純化 29 3-2-3 聚(乙烯醇–苯乙烯)嵌段共聚物(Poly(VA-b-St))之水解 30 3-2-4 奈米碳管穩定性測試 30 3-2-5 奈米碳管混高分子膜製備 31 第四章 結果與討論 32 4-1 製備聚(乙烯醇–苯乙烯)嵌段共聚物(Poly(VA-b-St)) 32 4-1-1 聚(乙酸乙烯酯–苯乙烯)嵌段共聚物(Poly(VAc-b-St))之合成與分析 32 4-1-2 聚(乙烯醇–苯乙烯)嵌段共聚物(Poly(VA-b-St))之合成與分析 40 4-2 聚(乙烯醇–苯乙烯)(Poly(VA-b-St))做為奈米碳管分散劑之穩定度測試 43 4-3 高分子複合膜之導電性測試 53 4-3-1 聚乙烯醇高分子複合膜之導電性測試 53 4-3-2 Poly(MMA-co-BA-co-GMA)高分子複合膜之導電性測試 56 4-4 高分子導電膜之膜性質分析 59 4-4-1 聚乙烯醇導電膜性質分析 59 4-4-2 Poly(MMA-co-BA-co-GMA)導電膜性質分析 63 第五章 結論 72 第六章 參考文獻 74

    1. Wayland, B.B., et al., Living Radical Polymerization of Acrylates by Organocobalt Porphyrin Complexes. Journal of the American Chemical Society, 1994. 116(17): p. 7943-7944.
    2. Szwarc, M., ‘Living’ Polymers. NATURE, 1956.
    3. Brown, W.B. and M. Szwarc, Molecular weight distribution of “living” polymers. Trans. Faraday Soc., 1958. 54(0): p. 416-419.
    4. Fischer, H., The persistent radical effect in 'living' radical polymerization. Macromolecules, 1997. 30(19): p. 5666-5672.
    5. Allan, L.E.N., M.R. Perry, and M.P. Shaver, Organometallic mediated radical polymerization. Progress in Polymer Science, 2012. 37(1): p. 127-156.
    6. 彭之皓, 謝宜良.王富生., 有機鈷金屬錯合物在高分子合成上的應用. 化學, 2005.
    7. Debuigne, A., et al., Overview of cobalt-mediated radical polymerization: Roots, state of the art and future prospects. Progress in Polymer Science, 2009. 34(3): p. 211-239.
    8. 彭之皓, 陳世基.王富生., 活性/可控自由基聚合反應. 化工. 63(3): p. 25-45.
    9. Debuigne, A., J.R. Caille, and R. Jerome, Highly efficient cobalt-mediated radical polymerization of vinyl acetate. Angew Chem Int Ed Engl, 2005. 44(7): p. 1101-1104.
    10. Peng, C.-H., et al., Organo-Cobalt Mediated Living Radical Polymerization of Vinyl Acetate. Macromolecules, 2008. 41(7): p. 2368-2373.
    11. Shan Li, B.d.B., Chi-How Peng, Michael Fryd, and Bradford B. Wayland, Exchange of Organic Radicals with Organo-Cobalt Complexes. Journal of the American Chemical Society 2008. 130(40): p. 13373-13381.
    12. Kermagoret, A., et al., In situ bidentate to tetradentate ligand exchange reaction in cobalt-mediated radical polymerization. European Polymer Journal, 2015. 62: p. 312-321.
    13. Kaneyoshi, H. and K. Matyjaszewski, Effect of ligand and n-butyl acrylate on cobalt-mediated radical polymerization of vinyl acetate. Macromolecules, 2005. 38(20): p. 8163-8169.
    14. Bryaskova, R., et al., Cobalt-mediated radical polymerization (CMRP) of vinyl acetate initiated by redox systems: Toward the scale-up of CMRP. Macromolecules, 2006. 39(24): p. 8263-8268.
    15. Bunck, D.N., G.P. Sorenson, and M.K. Mahanthappa, Cobalt-mediated radical polymerization routes to poly(vinyl ester) block copolymers. Journal of Polymer Science Part A: Polymer Chemistry, 2011. 49(1): p. 242-249.
    16. Debuigne, A., J.-R. Caille, and R. Jérôme, Synthesis of End-Functional Poly(vinyl acetate) by Cobalt-Mediated Radical Polymerization. Macromolecules, 2005. 38(13): p. 5452-5458.
    17. Sciannamea, V., et al., Supported cobalt mediated radical polymerization (SCMRP) of vinyl acetate and recycling of the cobalt complex. Chem Commun (Camb), 2006(40): p. 4180-4182.
    18. Ma, P.-C., et al., Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Composites Part A: Applied Science and Manufacturing, 2010. 41(10): p. 1345-1367.
    19. Xin, X., G. Xu, and H. Li, Dispersion and Property Manipulation of Carbon Nanotubes by Self-Assemibles of Amphiphilic Molecules. 2013.
    20. Moisala, A., et al., Thermal and electrical conductivity of single- and multi-walled carbon nanotube-epoxy composites. Composites Science and Technology, 2006. 66(10): p. 1285-1288.
    21. Ma, P.C., J.-K. Kim, and B.Z. Tang, Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites. Composites Science and Technology, 2007. 67(14): p. 2965-2972.
    22. Shaffer, M.S.P. and A.H. Windle, Fabrication and Characterization of Carbon Nanotube/Poly(vinyl alcohol) Composites. Advanced Materials, 1999. 11(11): p. 937-941.
    23. Bin, Y., et al., Morphology and mechanical and electrical properties of oriented PVA–VGCF and PVA–MWNT composites. Polymer, 2006. 47(4): p. 1308-1317.
    24. Dufresne, A., et al., Processing and characterization of carbon nanotube/poly(styrene-co-butyl acrylate) nanocomposites. Journal of Materials Science, 2002. 37(18): p. 3915-3923.
    25. Andrews, R., et al., Fabrication of Carbon Multiwall Nanotube/Polymer Composites by Shear Mixing. Macromolecular Materials and Engineering, 2002. 287(6): p. 395.
    26. Salem, K.S., et al., The effect of multiwall carbon nanotube additions on the thermo-mechanical, electrical, and morphological properties of gelatin-polyvinyl alcohol blend nanocomposite. Journal of Composite Materials, 2014. 49(11): p. 1379-1391.
    27. Habeeb, M.A., The Properties of (PVA-CNTs) Nanocomposites. Advances in Physics Theories and Applications, 2013. 15: p. 61.
    28. Leung, M.A.a.S.N., Electrical conductivity and humidity sensing properties of PVA CNT nanocomposites. 2016: SPE ANTEC p. 596.
    29. Baskaran, D., J.W. Mays, and M.S. Bratcher, Noncovalent and Nonspecific Molecular Interactions of Polymers with Multiwalled Carbon Nanotubes. Chemistry of Materials, 2005. 17(13): p. 3389-3397.
    30. Hyung, H., et al., Natural Organic Matter Stabilizes Carbon Nanotubes in the Aqueous Phase. Environmental Science & Technology, 2007. 41(1): p. 179-184.
    31. Tseng, C.H., C.C. Wang, and C.Y. Chen, Modification of multi-walled carbon nanotubes by plasma treatment and further use as templates for growth of CdS nanocrystals. Nanotechnology, 2006. 17(22): p. 5602-12.
    32. Jagadish, K., et al., Dispersion of Multiwall Carbon Nanotubes in Organic Solvents through Hydrothermal Supercritical Condition. Journal of Nanomaterials, 2015. 2015: p. 1-6.
    33. Kolesnikova, A.A., Y.S. Eremin, and A.M. Grekhov, Time-stability Dispersion of Carbon Nanotubes in Chloroform. Physics Procedia, 2015. 72: p. 51-55.
    34. Marsh, D.H., et al., Comparison of the stability of multiwalled carbon nanotube dispersions in water. Phys Chem Chem Phys, 2007. 9(40): p. 5490-6.
    35. Chakraborty, G., et al., Anomalous electrical transport properties of polyvinyl alcohol-multiwall carbon nanotubes composites below room temperature. Journal of Applied Physics, 2011. 109(3): p. 033707.
    36. Gamal M. Nasr, A.S.A.E.-H., Anke Klingner, Adel M. Alnozahy, M.Hussein Mourad, The DC Electrical Properties of Polyvinyl Alcohol/ Multi-Walled Carbon Nanotube Composites. Journal of Multidisciplinary Engineering Science and Technology, 2015. 2(5).
    37. Bryaskova, R., et al., Synthesis of poly(vinyl acetate)-b-polystyrene and poly(vinyl alcohol)-b-polystyrene copolymers by cobalt-mediated radical polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 2007. 45(1): p. 81-89.
    38. Blanchard, L.-P., J. Hesse, and S.L. Malhotra, Effect of Molecular Weight on Glass Transition by Differential Scanning Calorimetry. Canadian Journal of Chemistry, 1974. 52(18): p. 3170-3175.
    39. Nair, N., et al., Dynamics of surfactant-suspended single-walled carbon nanotubes in a centrifugal field. Langmuir, 2008. 24(5): p. 1790-5.
    40. Patel, P., F. Rodriguez, and G. Moloney, N-methyl-2-pyrrolidone as a solvent for poly(vinyl alcohol). Journal of Applied Polymer Science, 1979. 23(8): p. 2335-2342.
    41. Brostow, W., et al., Prediction of glass transition temperatures: Binary blends and copolymers. Materials Letters, 2008. 62(17-18): p. 3152-3155.

    下載圖示 校內:2022-08-01公開
    校外:2022-08-01公開
    QR CODE